next up previous
Next: 3. Fuzzy projections Up: 2. The algorithm Previous: 1. The Hilbert space

2. Spin directions

We choose the Pauli matrices $\sigma_x,\sigma_y,\sigma_z$ to represent spin directions along $x,y,z$ axes respectively.
\begin{displaymath}
\sigma_1=\sigma_x=\pmatrix{0,&1\cr 1,&0}\end{displaymath} (3)


\begin{displaymath}
\sigma_2=\sigma_y=\pmatrix{0,&{\mathrm{i}}\cr -{\mathrm{i}},&0}\end{displaymath} (4)


\begin{displaymath}
\sigma_3=\sigma_z=\pmatrix{1,&0\cr 0,&-1}
\end{displaymath} (5)

Together with the identity matrix
\begin{displaymath}
\sigma_0=I=\pmatrix{1,&0\cr 0,&1}
\end{displaymath} (6)

they span the whole $2\times 2$ complex matrix algebra. In computations it is important to make use of the fact that Pauli matrices (after multiplication by "-i") represent the quaternion algebra, that is:
\begin{displaymath}
\sigma_1^2=\sigma_2^2=\sigma_3^2=I
\end{displaymath} (7)

and
\begin{displaymath}
\sigma_1\sigma_2=-\sigma_2\sigma_1={\mathrm{i}}\sigma_3,\ \s...
...a_1,\
\sigma_3\sigma_1=-\sigma_1\sigma_3={\mathrm{i}}\sigma_2
\end{displaymath} (8)

To each direction ${\bf n}$ in space there is associated spin matrix
\begin{displaymath}
\sigma({\bf n})=n_1\sigma_1+n_2\sigma_2+n_3\sigma_3=\pmatrix{n_3,&n_1+{\mathrm{i}}n_2\cr
n_1-{\mathrm{i}}n_2,&-n_3}
\end{displaymath} (9)

satisfying automatically $\sigma({\bf n})^2=I,$ and with eigenvalues $+1,-1$. Vectors $\pmatrix{1\cr 0}$ and $\pmatrix{0\cr 1}$ are eigenvectors of $\sigma_3$ to eigenvalues $+1$ and $-1$ respectively and thus correspond to "North" and "South" spin orientations respectively. Let $P({\bf n})$ denote the projection operator that projects onto eigenstate of $\sigma({\bf n})$ to the eigenvalue $+1 .$ Then $P({\bf n})$ is given by the formula:
\begin{displaymath}
P({\bf n})=\frac{1}{2}(I+\sigma({\bf n})).
\end{displaymath} (10)

Indeed, $P({\bf n})$ is Hermitian and has eigenvalues $\frac{1}{2}(1\pm 1)=$ $1$ or $0$ - thus it is the orthogonal projection, and it projects onto the eigenstate of $\sigma({\bf n})$ with spin direction ${\bf n}.$
next up previous
Next: 3. Fuzzy projections Up: 2. The algorithm Previous: 1. The Hilbert space

2002-04-11