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Abstract

Using the Clifford algebra formalism we extend the quantum jumps
algorithm of the Event Enhanced Quantum Theory (EEQT) to convex
state figures other than those stemming from convex hulls of com-
plex projective spaces that form the basis for the standard quantum
theory. We study quantum jumps on n-dimensional spheres, jumps
that are induced by symmetric configurations of non-commuting state
monitoring detectors. The detectors cause quantum jumps via geomet-
rically induced conformal maps (Möbius transformations) and realize
iterated function systems (IFS) with fractal attractors located on n-
dimensional spheres. We also extend the formalism to mixed states,
represented by “density matrices” in the standard formalism, (the n-
balls), but such an extension does not lead to new results, as there is a
natural mechanism of purification of states. As a numerical illustration
we study quantum fractals on the circle (one-dimensional sphere and
pentagon), two–sphere (octahedron), and on three-dimensional sphere
(hypercube-tesseract, 24 cell, 600 cell, and 120 cell). The attractor, and
the invariant measure on the attractor, are approximated by the powers
of the Markov operator. In the appendices we discuss the Hamilton’s
“icossian calculus” and its application to quaternionic realization of
the binary icosahedral group that is at the basis of the 600 cell and its
dual, the 120 cell.

1



1 Introduction

“The accepted outlook of quantum mechanics (q.m.) is based
entirely on its theory of measurement. Quantitative results of
observations are regarded as the only accessible reality, our only
aim is to predicts them as well as possible from other observa-
tions already made on the same physical system. This pattern is
patently taken over from the positional astronomer, after whose
grand analytical tool (analytical mechanics) q.m. itself has been
modelled. But the laboratory experiment hardly ever follows
the astronomical pattern. The astronomer can do nothing but
observe his objects, while the physicist can interfere with his in
many ways, and does so elaborately. In astronomy the time–
order of states is not only of paramount practical interest (e.g.
for navigation), but it was and is the only method of discovering
the law (technically speaking: a hamiltonian); this he rarely, if
ever, attempts by following a single system in the time succes-
sion of its states, which in themselves are of no interest. The
accepted foundation of q.m. claims to be intimately linked with
experimental science. But actually it is based on a scheme of
measurement which, because it is entirely antiquated, is hardly
fit to describe any relevant experiment that is actually carried
out, but a host of such as are for ever confined to the imagination
of their inventors.”

So wrote Ervin Schrödinger fifty years ago [1]. Today the standard scheme
of q.m. is as antiquated as it ever was, and provides no answer to the
most fundamental questions such as “what is time?”, and how to describe
events that happen in a single physical system, such as our Universe.1 The
present paper follows the line of ideas developed in a series of papers that
has led to the Event Enhanced Quantum Theory (EEQT), as summarized
in [3], and recently extended in [4], but we now go beyond that framework.
While, following von Neumann, we keep the algebraic structure as one of the
most important for the mathematical formalism of q.m., and we propose to
dispose of the concept of “observables” and of “expectation values” at the

1Nowadays the defenders of the “antiquated scheme” of q.m. go as far as to assign
“crackpot index” to those who question this scheme. So, for instance, 10 points (on
the scale of 1–50), are assigned for each claim that quantum mechanics is fundamentally
misguided, and another 10 points for arguing that while a current well-established theory
predicts phenomena correctly, it doesn’t explain “why” they occur, or fails to provide a
“mechanism” [2].
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fundamental level. We also dispose of the concept of “time”, understood as a
“continuous parameter”, external to the theory. Our philosophy, concerning
“time” is that of the German social philosopher Ernest Bloch:

“Zeit ist nur dadurch, daß etwas geschieht und nur dort wo
etwas geschiecht.

So, time is only then , when something happens, and only there where some-
thing happens. Therefore the primary concept is that of an event , and of
the process - that is a sequence of events. Time, as a continuous, global vari-
able, comes in only in the limit of a large number of events. The primary
process is that of “quantum jumps”. It is an irreversible process in an open
system, and every system in which the “future” is only “probable”, rather
than determined, is necessarily an open system. The mathematical formal-
ism of the standard quantum theory is based on complex Hilbert spaces and
Jordan algebras of self–adjoint operators. It involves interpretational axioms
for expectation values and eigenvalues of self–adjoint operators as “possible
results of measurements”, yet it does not provide a framework for defining
the measurements [5, 6]. In view of these considerations, Gell-Mann would
certainly score a high crackpot index [2] for this statement:

“Those of us working to construct the modern interpretation
of quantum mechanics aim to bring to an end the era in which
Niels Bohr’s remark applies: ‘If someone says that he can think
about quantum physics without becoming dizzy, that shows only
that he has not understood anything whatever about it’.”

The same can be said about the last paragraph of Schrödingers paper [1],
where he wrote

“We are also supposed to admit that the extent of what is,
or might be, observed coincides exactly with what quantum me-
chanics is pleased to call observable. I have endeavored to ad-
umbrate that it does not. And my point is that this is not an
irrelevant issue of philosophical taste; it will compel us to recast
the conceptual scheme of quantum mechanics.”

The need for an open–minded approach is well noted by John A. Wheeler,
who ends his book “Geons, Black Holes & Quantum Foam” [7] with the
following quote from Niels Bohr’s friend Piet Hein:

I’d like to know
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what this whole show
is all about

before it’s out.

Alain Connes and Carlo Rovelli [8] proposed to explain the classical time
parameter as arising from the modular automorphism group of a KMS state
on a von Neumann algebra over the field of complex numbers C. 2 But their
philosophy applies, at most, to equilibrium states, while “quantum foams”
before the Planck era are certainly far from equilibrium. David Hestenes
[10, 11] proposed to understand the role of the complex numbers in quantum
theory in terms of the Clifford algebra. This is also our view. L. Nottale, in
his theory of “scale relativity” [12] proposed an alternative idea, where the
complex structure arises from a stochastic differential equation in a fractal
space–time. We think that our approach may serve as a connecting bridge
between fractality, the nontrivial topology of dodecahedral models of space–
time, as discussed by J–P. Luminet et al. [13] (cf. also [14].), and the late
thoughts of A. Einstein [15, p. 92], who wrote:

“To be sure, it has been pointed out that the introduction of
a space-time continuum may be considered as contrary to nature
in view of the molecular structure of everything which happens
on a small scale. It is maintained that perhaps the success of
the Heisenberg method points to a purely algebraical method of
description of nature, that is to the elimination of continuous
functions from physics. Then, however, we must also give up, by
principle, the space-time continuum. It is not unimaginable that
human ingenuity will some day find methods which will make
it possible to proceed along such a path. At the present time,
however, such a program looks like an attempt to breathe in
empty space.”

The present paper is a technical one. It fills the empty space with discrete
structures, and it deals with the discrete random aspects of quantum jumps
generated by the algebraic structure of real Clifford algebras of Euclidean
spaces, and of their conformal extensions. The jumps are generated by
Möbius transformations and lead to iterated function systems with place
dependent probabilities, thus to fractal patterns on n–spheres. Our ideas
are close to those of W. E. Baylis, who also noticed [16] the similarities

2C.f. also [9], where a similar idea, based on a KMS equilibrium state is discussed in
a broader, philosophical framework
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between the Clifford algebra scheme and the formal algebraic structure of
q.m.

In Sec. 2 we introduce our notation, which follows the one of Deheuvels
[17]. In Proposition 1 we recall the vector space isomorphism between the
Clifford algebra and the exterior algebra, and in Proposition 2 we define the
trace functional, and list its properties that are important for applications
to quantum probabilities.

In Sec. 3 we discus Möbius transformations of the spheres Sn, as well as
their natural extensions to their interiors Bn+1. Proposition 3 gives the ex-
plicit form of the embedding of the Clifford algebra C(1, n+1) in the matrix
algebra Mat(2, C(n + 1)) and allows us to realize the group Spin(1, n + 1)
by two–by–two diagonal matrices with entries in C = C(n+1). Proposition
4 provides the main result of this section: to every non–zero vector in the in-
terior of the unit ball Bn+1 ⊂ E = En+1, written as εn , 0 < ε < 1, n2 = 1,
we associate (cf. Eq. (3.12) the element g(εn) ∈ Spin(1, n+1), that defines
a Möbius transformation g(εn) of Sn and its extension to B̄n+1. We give
the explicit form of these transformations (cf. Eq. (3.15) and calculate the
Radon-Nikodym derivatives of the transformed surface and volume areas
(cf. Eqs. (3.18), (3.19)).

In Sec. 4 we discuss iterated function systems (IFS) of conformal maps
and introduce the important concept of the Markov operator which is later
being used in our numerical simulations (cf. Sec. 5). Proposition 5 of this
section is important in applications to quantum theory. One of the most
important features of the standard, linear, quantum mechanics is the fact
that “observables” are restricted to bilinear functions on pure states. There-
fore different mixtures of pure states leading to the same “density matrix”
are claimed to be experimentally indistinguishable. In our Proposition 5,
and in Corollary 1, we show that if the probabilities of the iterated function
systems of Möbius transformations are given by geometrical factors derived
from the maps themselves (cf. Eqs. (3.15),(4.31)), and also the additional
balancing condition (4.30)), then the Markov operator restricts to the space
of functions on Sn given by the trace on the Clifford algebra, thus leading
to a linear Markov semi-group. Corollary 2 gives the explicit form of the
Markov operator for the case when the IFS of Möbius transformations is
endowed with geometrical probabilities given by Eq. (4.31).

Sec. 5 contains the results of the numerical simulations of IFS of Möbius
transformations that lead to “quantum fractals”. We study quantum fractals
on the circle (one-dimensional sphere and pentagon), two–sphere (octahe-
dron), and on three-dimensional sphere (hypercube-tesseract, 24 cell, 600
cell, and 120 cell). The last section contains the summary and conclusions

5



and also points out some open problems.
In the appendices we discuss the Hamilton’s “icossian calculus” (in particu-
lar we quote in extenso the original Hamilton’s paper published in 1856), and
its application to quaternionic realization of the binary icosahedral group
that is at the basis of 600 cell and its dual, the 120 cell.

2 Notation

We denote by E(r,s) the real vector space Rn, n = r + s, endowed with the
quadratic form q(x) of signature (r, s). En = E(n,0) is the standard n–
dimensional Euclidean space. The Clifford algebra of E(r,s) is denoted by
C(E(r,s)) or, shortly, as C(r, s). The Clifford map E(r,s) 3 x 7→ φ(x) ∈
C(E(r,s)) satisfies φ(x)2 = q(x)I. x and φ(x) are often identified, so
that E(r,s) can be considered as a vector subspace of C(r, s) that gen-
erates C(r, s) as an algebra. The principal automorphism of C(E(r,s)) is
denoted by π and is determined by π(x) = −x, x ∈ E(r,s), while the prin-
cipal anti–automorphism τ, denoted also as τ(a) = aτ , is determined by
xτ = x, x ∈ E(r,s). Their composition ν is the unique anti–automorphism
satisfying ν(x) = −x for all x ∈ E(r,s). C(n) (resp. R(n) ) will denote the
algebra of complex (resp. real) matrices n× n.
Let us recall that, as a vector space, Clifford algebra is naturally graded and
isomorphic the exterior algebra. In particular we have the following result :

Proposition 1. Let ei, i = 1, 2, . . . , n be an orthonormal basis for E(r,s),
and let eI : I = (i1, i2, . . . , ip), 1 ≤ i1 < i2 < . . . < ip ≤ n be defined as
the Clifford products eI = ei1ei1 . . . eip , with eI = 1 for I = ∅. Then the
set {eI} of 2n vectors in C(r, s) is a linear basis of C(r, s), the subspaces
Cp generated by eI , I = (i1, . . . ip) are independent of the choice of the
orthonormal basis ei, and C(r, s) is the direct sum of vector subspaces Cp :

C(r, s) =
n⊕

k=0

Cp (2.1)

Moreover, for each p = 0, . . . , n the skew–symmetric map αp from E(r,s)×
E(r,s) × . . . × E(r,s) (p times) to C(r, s) given by:

αp(x1, x2, . . . , xp) =
1
p!

∑
σ

(−1)σxσ1xσ2 . . . xσp,

determines an isomorphism of the vector subspace Λp E(r, s) of the exte-
rior algebra ΛE(r, s) onto Cp that sends ei1 ∧ . . . ∧ eip ∈ Λp E(r, s) to
ei1 . . . eip ∈ Cp ⊂ C(r, s).
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Proof: c.f. [17, Theoreme VIII.10]¥

We denote by Φ the linear functional on C(r, s) assigning to each ele-
ment a ∈ C(r, s) its scalar part Φ(a) = a0 ∈ C0 in the decomposition (2.1).
Then the following proposition holds:

Proposition 2. The functional Φ has the following properties:

(i) Φ(1) = 1,

(ii) Φ(aτ ) = Φ(a), ∀a ∈ C(r, s),

(iii) Φ(ab) = Φ(ba), ∀a, b ∈ C(r, s),

(iv) (a, b) .= Φ(aτ b) is a nondegenerate, symmetric, bilinear form on
C(r, s), that is positive definite if the original quadratic form on E
is positive definite. We have Φ(a) = (1, a) = (a, 1), ∀a ∈ C(r, s).

(v) (ab, c) = (b, aτ c) = (a, cbτ ), ∀a, b, c ∈ C(r, s).

Proof: (i) and (ii) follow immediately from the definition. In order to
prove (iii) notice that if {ei}, i = 1, . . . , n is an orthonormal basis in
E(r,s), {eI}, I = {i1 < . . . < ip} is the corresponding basis in C(r, s),
and a =

∑
I aIe

I , b =
∑

I bIeI are the decompositions of a and b in the
basis eI , then Φ(ab) =

∑
I aIbIΦ(eIeI) = Φ(ba). From the very definition

of the scalar product (a, b) it follows that (a, b) = Φ(aτ b) = Φ((aτ b)τ ) =
Φ(bτa) = (b, a). Moreover, we have (eI , eJ)=0 if I 6= J, and also (eI , eI) =
ei1

2 . . . eip
2 = (−1)s(I), where s(I) is the number of negative norm square

vectors in I. In particular eI is orthonormal with respect to the scalar prod-
uct in C(r, s), and so (iv) holds. We have (ab, c) = Φ((ab)τc) = Φ(bτaτ c) =
(b, aτc) = Φ(aτcbτ ) = (a, cbτ ), which establishes (v).¥ 3

3 Möbius transformations of Sn and their exten-
sions to Bn+1

The unit n–sphere Sn, that is the boundary of the closed unit ball B̄n+1 in
the Euclidean space Rn+1, can be considered as a one-point compactification
of Rn. Sn is also the Möbius space of Rn where Möbius transformations

3It is easy to see that Φ(a) = (1/2n)tr(l(a)), where l(a) is the left multiplication by
a acting on C(r, s) : l(a)b = ab, and the trace is taken over C(r, s), see e.g. [18, p. 601]
for a general discussion. Because of this property Φ may be called a trace functional.
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are realized as pseudo–orthogonal transformations of R(1,n+1) - cf. e.g. [19,
Theorem 2.2.1.3.3]. We will discuss a special class of these transformations
and their natural extension to the interior of B̄n+1. To simplify the notation,
in what follows, we will denote Rn+1 by E, and we will set its vectors
in bold, as, for example x, r,n, etc. The natural quadratic form and the
associated bilinear form in E will be denoted as x 7→ x2 and (x,x′) 7→ x ·x′
respectively.

Let Bn+1 be the open unit ball in E , let B̄n+1 be its closure, and Sn

its boundary:

B̄n+1 = {x ∈ E : x2 ≤ 1}, Bn+1 = {x ∈ E : x2 < 1}, (3.2)

and
Sn = {x ∈ E : x2 = 1}. (3.3)

Let
E(1,n+1) .= R⊕ E

be equipped with the quadratic form

q(x0 ⊕ x) = q(x0,x) = (x0)2 − x2, x0 ∈ R, x ∈ E,

where, following the standard notation for the Minkowski space, we denote
by x0 the additional (n + 1) ’s coordinate. Let

C+ = {(x0,x) ∈ E(1,n+1) : x0 > 0, x2 − (x0)2 = 0}

be the positive isotropic cone of E(1,n+1), and denote by T1 the hyper–plane
T1 = {(x, x0) : x0 = 1, x ∈ E}. Then the intersection of T1 with C+ can
be identified with Sn, and the intersection of T1 with the interior region of
C+ can be identified with Bn+1 :

B̄n = {(x0,x) : x0 = 1, q(x0,x) ≥ 0},

Bn+1 = {(x0,x) : x0 = 1, q(x0,x) > 0},
Sn = {(x0,x) : x0 = 1, q(x0,x) = 0}.

Let O++(1, n + 1) be the connected component of the identity of the
pseudo–orthogonal group of E(1,n+1). The transformations from
O++(1, n + 1) act linearly on E(1,n+1) and map bijectively both C+ and its
interior onto themselves. Therefore they induce, by projections, bijections
of B̄n+1 and of Sn. We will describe now a specific class of these transfor-
mations, members of this class being parametrized by vectors εn ∈ Bn+1.
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Let C(1, n+1) be the Clifford algebra of E(1,n+1), and let Spin(1, n+1)
be its spin group4. Every element g ∈ Spin(1, n+1) is a product of an even
number of positive unit vectors (i.e. u ∈ E(1,n+1) such that q(u) = +1)
and an even number of negative unit vectors (i.e. u ∈ E(1,n+1) such that
q(u) = −1 ) – cf. [17, Definition IX.4.C]. Let C .= C(n + 1) be the Clifford
algebra of En+1. Notice that C(1, n + 1) can be realized as a sub–algebra
of the algebra of the algebra of 2×2 matrices with values in C, the Clifford
map E 3 x = (x0,x) 7→ γ(x) ∈ Mat(2, C) being given by:

γ(x0,x) =


 0 x0 + x

x0 − x 0


 =


 0 x0 + x

π(x0 + x) 0


 . (3.4)

In fact we have the following Proposition5:

Proposition 3. The Clifford algebra C(1, n + 1) can be realized as the
sub–algebra

A(a, b) =






 a b

π(b) π(a)


 : a, b ∈ C





(3.5)

of Mat(2, C). The principal involution π and the principal anti–involution
τ of C(1, n + 1) can be expressed through their corresponding operations in
C as

π(A(a, b)) = A(a,−b), (3.6)

τ(A(a, b)) = A(ν(a), τ((b)). (3.7)

The even subalgebra C+(1, n + 1) of C(1, n + 1) can then be identified with
the set of all A(a, b), with b = 0, that is with C.
Proof The first part of the statement follows from the Theorem 2.37 in Ref.
[20]6 Let C be the matrix

C =


1 0

0 −1


 , (3.8)

4We are using the notation conventions of Ref. [17]. In particular the group Spin is
assumed to be connected (some authors denote it Spin0 ).

5The first part of this Proposition follows from [20, Theorem (2.37), p. 21]
6It should be noted that in Ref. [20] the authors use the sign convention that is opposite

to ours when defining Clifford algebras of quadratic spaces. Therefore a slight adaptation
of their result is needed.
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then
CA(a, b)C−1 = A(a,−b), (3.9)

therefore the formula (3.6) defines an involutive automorphism of C(1, n+1),
and it is clear from (3.4) that it reverses the signs of vectors. Therefore it
defines the principal involution of C(1, n+1). The map τ given by Eq. (3.7)
is an anti–involution, and it is evident from its definition and the Clifford
map (3.4) that it leaves vectors unchanged. Therefore it defines the principal
anti–involution of C(1, n + 1). ¥

According to the above Proposition the map ψ : C+(1, n + 1) 3 A 7→
A11 ∈ C is an algebra isomorphism from the even subalgebra C+(1, n + 1)
to C. It follows that the group Spin(1, n + 1) can be realized via 2 × 2
matrices A(g), g ∈ Spin(1, n + 1), with values in C, of the form

A(g) =


ψ(g) 0

0 π(ψ(g))


 , (3.10)

with ψ(g) ∈ C, the action of Spin(1, n + 1) on E(1,n+1), g : x = (x0,x) 7→
x′ = (x′0,x′) being given by

C 3 (x0 + x) 7−→ (x′0 + x′) = ψ(g)(x0 + x)π(ψ(g)−1).7

Note: Notice that if the even subalgebra C+(1, n + 1) of C(1, n + 1) is
identified with C, then ψ(g) is identified with g

For each x ∈ B̄(n+1) let P (x) be the element of C defined by

P (x) = (1 + x). (3.11)

Then

a) P (x)τ = P (x),

b) x = P (x)− 1, and

c) P (x)/2 is an idempotent if an only x ∈ Sn.

7Using the method indicated in [20, Theorem 6.12] one can show that the image of
Spin(1, n + 1) by the isomorphism ψ consists of all a ∈ C with ∆(a) = 1 and such that
a(x0 + x)aτ = x′0 + x′ for x0 ∈ R, x ∈ Rn.
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Notice that Sn is the boundary (and the set of extremal points) of the convex
ball B̄(n+1). If x ∈ B̄(n+1) is a convex combination of xα, x =

∑
α tαxα,

0 ≤ tα ≤ 1,
∑

tα = 1, then P (x) = P (
∑

α tαxα) =
∑

α tαP (xα), so that
the convex structure of B̄(n+1) is being mirrored by the convex structure in
the algebra C.
Proposition 4. For each 0 < ε < 1 and each n ∈ Sn ⊂ E, let g(εn) be
the element of the Clifford algebra C(1, n + 1) defined by:

g(εn) =
(e0 + εn)(e0 − εn)

1− ε2
, (3.12)

where e0 is the vector (1,0) ∈ E(1,n+1).
Then g(εn) ∈ Spin(1, n + 1),

g(εn)−1 =
(e0 − εn)(e0 + εn)

1− ε2

and, for all x ∈ E,

g(εn)(e0 + x)g(εn)−1 =
1 + α2 + 2α(n · x)

1− α2
(e0 + x′), (3.13)

where
α =

2ε

1 + ε2
, (3.14)

and

x′ =
(1− α2)x + 2α(1 + α (n · x))n

1 + α2 + 2α (n · x)
. (3.15)

In terms of the C realization given by Eqs (3.4),(3.10) the transformation
x 7→ x′ reads:

P (x) 7−→ P (x′) =
P (αn) P (x)P (αn)
1 + α2 + 2α(n · x)

, (3.16)

with P (αn) ∈ C given by

P (αn) = 1 + αn. (3.17)

If x ∈ B̄n+1 then x′ ∈ B̄n+1, and if x ∈ Sn then x′ ∈ Sn. The map
Sn 3 x 7→ x′ ∈ Sn, given by Eq. (3.15), is conformal and it does not, in
general, preserve the canonical, SO(n + 1)–invariant, volume form dS of
Sn. For every x ∈ Sn we have:

dS′

dS
(x) =

(
1− α2

1 + α2 + 2α(n · x)

)n

. (3.18)
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If the map (3.15) is applied to the ball B(n+1) (rather than to its boundary
Sn ), and if dV denotes the standard Euclidean volume form of En+1, then

dV ′

dV
=

(
1− α2

1 + α2 + 2α(n · x)

)n+2

. (3.19)

Proof Since (e0 + εn)2 = (e0 − εn)2 = ε2 − 1, it follows that g(εn) de-
fined be Eq. (3.12) is in Spin(1, n + 1) and we have g(εn)−1 = g(−εn) =
(e0− εn)(e0 + εn)/(1− ε2). The formulae (3.13) and (3.15) follow then by a
straightforward, though lengthy, calculation. Using the representation given
by the formula (3.4) we get g(εn) represented by:

A(g(εn)) =


q(αn) 0

0 π(q(αn)),




with q(αn) ∈ C given by Eq. (3.17). Taking into account that π(q(αn)) =
q(αn)−1 we obtain Eq. (3.16). To prove Eq. (3.18) let us choose an or-
thonormal coordinate system in E so that the vector n has coordinates
x1 = x2 = . . . = xn = 0, xn+1 = 1. Let us introduce spherical coordinates
(cf. [21, p.240]) θ1, θ2, . . . , θn , 0 ≤ θi ≤ π, i = 2, . . . , n, 0 ≤ θ1 ≤ 2π, so
that

x1 = sin(θn) sin(θn−1) sin(θn−2) . . . sin(θ3) sin(θ2) sin(θ1),
x2 = sin(θn) sin(θn−1) sin(θn−2) . . . sin(θ3) sin(θ2) cos(θ1),
x3 = sin(θn) sin(θn−1) sin(θn−2) . . . sin(θ3) cos(θ2),

. . .
xn = sin(θn) cos(θn−1)

xn+1 = cos(θn).

The vector n has now spherical coordinates θ1 = θ2 = . . . θn = 0, and the
transformation given by Eq. (3.13) takes the form

θ′1 = θ1,

. . . . . .

θ′n−1 = θn−1,

cos(θ′n) = (1−α2) cos(θn)+2α(1+α cos(θn))
1+α2+2α cos(θn)

.





(3.20)
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The volume element dS for Sn in spherical coordinates is (cf. e.g. [21, p.
242])

dS = sinn−1(θn) sinn−2(θn−1) . . . sin2(θ3) sin(θ2)dθ1 . . . dθn. (3.21)

From Eqs. (3.20) and (3.21) it follows that

dS′

dS
=

sinn−1(θ′n)dθ′n
sinn−1(θn)dθn

=
sinn−2(θ′n)d cos(θ′n)
sinn−2(θn)d cos(θn)

.

Now, by a straightforward computation, using the last row of Eq. (3.20) we
have

sin2(θ′n)
sin2(θn)

=
1− cos2(θ′n)
1− cos2(θn)

=
(1− α2)2

(1 + α2 + 2α cos(θn))2
(3.22)

and also
d cos(θ′n)
d cos(θn)

=
(1− α2)2

(1 + α2 + 2α cos(θn))2
. (3.23)

Therefore, taking into account the fact that cos(θn) = n · x, we get

dS′

dS
=

(1− α2)n

(1 + α2 + 2αn · x)n
=

(
1− α2

1 + α2 + 2α(n · x)

)n

, (3.24)

as in (3.18). If the map (3.15) is applied to the (n + 1)–dimensional open
ball Bn+1, then, for i = 1, . . . , n, ∂x′ i/∂xi = (1− α2)/1 + α2 + 2α(n · x),
∂x′ i/∂xn+1 6= 0, and ∂x′n+1/∂xn+1 = (1−α2)/1+α2 +2α(n ·x)2, all other
partial derivatives vanishing. Thus the Jacobi matrix ∂x′/∂x is triangular,
and so its determinant is the product of the diagonal elements, as in Eq.
(3.19), which completes the proof.¥

4 Iterated function systems of conformal maps

Let S be a set, let {wi : i = 1, 2, . . . , N} be a family of maps wi : S −→
S, and let pi(x), i = 1, 2, . . . , N be positive functions on S satisfying∑N

i=1 pi(x) = 1, ∀x ∈ S. The maps wi and the functions pi(x) define what
is called and iterated function system (IFS) with place dependent probabilities
- cf. [22]. Starting with an initial point x0 we select one of the transforma-
tions wi with the probability distribution pi(x0). If wi1 is selected, we get
the next point x1 = wi1(x0), and we repeat the process again, selecting the
next transformation wi2 , according to the probability distribution pi(x1).
By iterating the process we produce a random sequence of integers i0, i1, . . .
and a random sequence of points xk = wik(xk−1) ∈ S, k = 1, 2, . . . .
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In interesting cases the sequence xk accumulates on an ”attractor set”
which has fractal properties. Instead of looking at the points of S we can
take a dual look at the functions on S. Let F(S) be the set of all real–
valued functions on S. F(S) is a vector space, and each transformation
w : S → S induces a linear transformation w? : F(S) → F(S) defined by
(w?f)(x) = f(w(x)), x ∈ S, f ∈ F(S).

4.1 Markov operator

Given an iterated function system {wi, pi( . )} on S one naturally asso-
ciates with it a linear Markov operator (sometimes called also the transfer
operator) T ∗ : F(S) → F(S) defined by

(T ∗f)(x) =
N∑

i=1

pi(x)(w∗i f)(x) =
N∑

i=1

pi(x)f(wi(x)). (4.25)

There is a dual Markov operator T∗, acting on measures on S. Suppose S
has a measurable structure, wi and pi( . ) are measurable, and let F(S)
be the space of all bounded measurable functions on S. Let M(S) be the
space of all finite measures on S. Then T∗ : M(S) →M(S) is defined by
duality: (T∗µ, f) = (µ, T ∗f), where (µ, f) .=

∫
fdµ. Since T ∗(1) = 1, where

1(x) = 1, ∀x ∈ S, we have that
∫

dT∗µ =
∫

dµ and, in particular, T∗ maps
probabilistic measures into probabilistic measures. In many interesting cases
the sequence of iterates (T∗)kµ converges, in some appropriate topology, to
a limit µ∞ = limk→∞(T∗)kµ, that is independent of the initial measure µ,
and which is the unique fixed point of T∗. The support set of µ∞ is then
the attractor set mentioned above.

Let µ0 be a fixed, normalized measure on S, and assume that the maps
w−1

i map sets of measure µ zero into sets of measure µ zero. Then, for any
finite k , the measure T?

kµ0 is continuous with respect to µ0 and therefore
can be written as

T?
kµ0(r) = fk(r) µ0(r). (4.26)

The sequence of functions fk(r) gives a convenient graphic representation
of the limit invariant measure. In our case, as it follows from the formula
(4.26), the maps wi are bijections, and the functions fk can be computed
explicitly via the following recurrence formula:

fk+1(r) =
N∑

i=1

pi

(
w−1

i (r)
) dµ0

(
w−1

i (r)
)

dµ0(r)
fk

(
w−1

i (r)
)
. (4.27)
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4.2 Conformal maps

In this section the set S is either the sphere Sn, or the closed ball B̄n+1,
and the maps w are of the form (3.15), and are determined by vectors
αn ∈ B(n+1). Let us choose one α, 0 < α < 1, and N unit vectors
ni ∈ Sn, so that we have N maps

wi(x) =
(1− α2)x + 2α(1 + α(ni · x))ni

1 + α2 + 2α(ni · x)
, (4.28)

as in Proposition 4. In our case we have an additional structure in the set
S and in the maps wi, namely the one stemming from the Clifford algebra
realization. First of all to each x ∈ Sn we have associated the idempotent
P (x) = 1

2(1+x), and then we have a special class of functions on S, namely
the functions of the form:

fa(x) = (P (x), a), a ∈ C, x ∈ B̄(n + 1). (4.29)

We denote by L the vector space of these functions. Notice that functions
in L separate the points x ∈ B̄(n+1). Indeed, for x,y ∈ B̄(n+1) we have
fy(x) = x ·y/2, thus our statement reduces to: for any two different vectors
x1,x2 one can always find another vector y such that x1 ·y 6= x2 ·y, which
is evident. 8

Proposition 5. With the notation as in the beginning of this section, let
0 < α < 1, ni ∈ Sn, i = 1, 2, . . . N and wi as in Eq. (4.28). Suppose that

1)
N∑

i=1

ni = 0, (4.30)

2)

pi(x) =
1 + α2 + 2α(ni · x)

Z(α)
, (4.31)

where

Z(α) =
N∑

i=1

(1 + α2 + 2α(ni · x)) = N(1 + α2),

8The space L is (n + 2) –dimensional, as it is clear that fa(x) ≡ 0 for a ∈ Cp ⊂
C, p > 1.
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then the Markov operator T ∗ of the iterated function system {(wi, pi)} maps
the space L into itself: T ∗ : fa 7→ fV (a), where

V (a) =
1

N(1 + α2)

N∑

i=1

P (αni) aP (αni). (4.32)

Proof: From Eq. (3.13) it follows that if
∑

i ni = 0, then Z
.=

∑
i(1+α2 +

2α(ni ·x)) = N(1 +α2)/(1−α2) is a constant, independent of x. From the
very definition of the Markov operator, as well as from Eqs (4.29),(3.16) it
follows then that

(T ∗fa)(x) =
∑

i

pi(x)fa(wi(x)) =
∑

i

pi(x)Φ(aP (wi(x)))

=
∑

i

pi(x)Φ
(

a
1− α2

(1 + α2 + 2α(ni · x))
P (αni)P (x)P (αni)

)

=
∑

i

pi(x)
(1− α2)

1 + α2 + 2α(ni · x)
Φ (P (αni)aP (αni)P (x))

=
1

Z(α)

∑

i

Φ(P (αni)aP (αni)P (x)) = fV (a)(x).

¥

The Markov operator T∗ acts on measures, while its dual T ∗ acts on
functions on S. Every probabilistic measure µ on S determines an algebra
element P (µ) defined by:

P (µ) =
∫

S

P (x) dµ(x) = 1 +
∫

S

x dµ(x) = P




∫

S

x dµ(x)


 , (4.33)

so that automatically Φ(P (µ)) = 1. P (µ) is an idempotent if and only if µ
is concentrated at just one point on the boundary Sn. In general there are
infinitely many measures µ giving rise to the same algebra element P (µ).
The process of integration on one hand leads to simplification (linearization)
but, on the other hand, it also leads to the loss of information.

Corollary 1. Under the assumptions 1) and 2) of Proposition 5, if µ1 and
µ2 are two probabilistic measures on S such that P (µ1) = P (µ2) = P, then
P (T∗µ1) = P (T∗µ2) = V (P ), where V (P ) is given by the formula (4.32),
with a replaced by P.
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Proof: Because functions fa, a ∈ C separate the elements of C, it is enough
to show that fa(P (T∗µ)) = fa(V (P (µ))) for all a ∈ C. Now, from the very
definition of the functions fa, fa(x) = Φ(aP (x)), and from the linearity of
the trace functional Φ, it follows that (fa, µ) .=

∫
fa(x)dµ(x) = Φ(aP (µ)),

and so fa(V (P (µ)) = Φ(aV (P (µ))) = Φ(V (a)P (µ)) = fV (a)(P (µ)) =
fa(P (T∗µ)). QED ¥

Corollary 2. Under the assumptions 1) and 2) of Proposition 5, the Markov
operator recurrence formula (4.27) is explicitly given by

fk+1(r) =
(1− α2)n+2

N(1 + α2)

N∑

i=1

fk

(
w−1

i (r)
)

(1 + α2 − 2α(ni · x))n+1 , (4.34)

where

w−1
i (r) =

(1− α2)r− 2α(1− α(ni · r))ni

1 + α2 − 2α(ni · r) . (4.35)

Proof: Follow directly by a somewhat lengthy calculation using the Eqs.
(4.27),(4.28),(4.31), and (3.19). QED ¥

Note: Iterated function systems for mixed states have been discussed by
ÃLozinski et al. in Ref. [23], while SÃlomczynski [24] discussed Markov op-
erators and dynamical entropy for general IFS–s on state spaces. In these
references the probability distributions assigned to the maps were generic
rather than derived geometrically, as is the case in this paper.

5 Examples

5.1 S1 – Polygon

As the first example we consider the circle S1, and unit vectors ni point-
ing to the vertices of a regular polygon. For an illustration we choose the
pentagon. Fig. 1 shows the plot of log1 0(f7 + 1.0), the 7–th iteration of
the Markov operator – see Eq. (4.34), for α = 0.58.

5.2 S2

S2, the Riemann sphere, is the same as the complex projective line P 1(C)
- the space of pure quantum states of the simplest non–trivial quantum
system, namely spin 1/2. Examples of quantum fractals on S2, based on
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Platonic solids, has been given elsewhere (cf. [28], and references therein).
Here we give just one example, namely the octahedral quantum fractal. Fig.
2 shows the 7–th power of the Markov operator: log10(f7 + 1), - cf. Eq.
(4.34) for α = 0.5, plotted on the projection of the upper hemisphere of
S2. The emergence of circles on the plot is rather surprising and not well
understood.9

5.3 S3 – regular polytopes

There are six regular polytopes in four dimensions: self–dual pentachoron
(or 4 simplex), 16 cell (or cross–polytope, or hexadecochoron), dual to it 8
cell (or hypercube or tesseract), self–dual 24 cell (or icositetrachoron), 600
cell (or hexacosichoron), and its dual 120 cell (or hecatonicosachoron) - cf.
Fig. 3 and Fig. 8. In our examples of four dimensional quantum fractals we
skip the first one. The pentachoron (the four dimensional equivalent of the
tetrahedron) leads to rather trivial and uninteresting fractal pattern.

5.4 S3 – 16 cell.

Quaternions of the form a + bi + cj + dk, a, b, c, d ∈ Z form the so called
Lipschitz ring. The unit quaternions of this ring form a group of order 8
- the binary dihedral group D4. Its eight elements, {±1,±i,±j,±k} form
the four-dimensional regular polytope, the so called cross–polytope , with
Schläfli symbol {3, 3, 4}. It has 16 tetrahedral cells, each of its 24 edges
belongs to 4 cells.

Visualization of quantum fractals that live in four dimensions is diffi-
cult. Here we generate 10,000,000 points of the iterated function system
described in Sec 4.2, with ni being the 8 vertices of the 16 cell, α = 0.5,
and with probabilities given by Eq. (4.31). We plot the three dimensional
projections of those 16742 points which fall into the slice of S3 with the
fourth coordinate 0.5 < x4 < 0.51 - see Fig. 4.

This pattern, generated by the IFS of conformal maps with place--
dependent probabilities should be compared with the plot of the fourth
approximation to the density of the limiting invariant measure - Fig. 4.
Due to the recursive nature of the formula Eq. (4.34) the computation time
of fk grows exponentially with k. With each level new details appear in the

9The algorithm for generating conformal quantum fractals on S2 has been included
in the CLUCalc software by Christian Perwass. A video zooming on a quantum fractal
based on the regular octahedron, α = 0.42, can be seen on the CLUCalc home page:
http://www.clucalc.info/
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graph, at the same time the probability peaks get higher (as in Fig. 6). To
present more details in the graph, we are plotting log10(f4(r) + 1), rather
than the function f4(r) itself. Notice that for each k, the integral of fk(r)
over the sphere S3 , with the natural SO(4) invariant measure , is constant
and equal to the volume of S3.

5.5 S3 – 8 cell.

Dual to the 16 cell is the 8 cell, also known as cross polyhedron hypercube ,
or tesseract . Its 16 vertices are the unit quaternions 1

2(±1,±i,±j,±k). Its
Schläfli symbol is {4, 3, 3}, which means that its cells are {4, 3} - that is
cubes, each face belongs to 2 cells, and each edge belongs to 3 cells. The
hypercube is built of two 3 dimensional cubes, their edges being connected
along the fourth coordinate. The projection of the hypercube is shown in
Fig. 3.

We choose 16 unit vectors ni pointing to the vertices of the hypercube.
Fig. 5 shows the plot of f5, the 5–th iteration of the Markov operator (given
by Eq. (4.34), for α = 0.60, restricted to the section x3 = 0.8, projected
onto (x1, x2) plane.

5.6 S3 – 24 cell.

Quaternions of the form a + bi + cj + dk, a, b, c, d ∈ Z or a, b, c, d ∈ Z+ 1
2

form a ring, called the Hurwitz ring . Its additive group is the F4 lattice. The
unite quaternions of this ring form a group, the binary tetrahedral group T24,
isomorphic to the group SL(2, 3) - with generators the same as for SL(2, 5),
- cf. Eq (8.41), except that the multiplications are carried in Z3. 24 cell
has Schläfli symbol {3, 4, 3}, which means that its 24 cells are octahedrons,
with each edge belonging to three cells [29, p. 68]. Each of its 16 vertices
is common to 6 cells - cf. Fig. 3. Fig. 6 shows the plots of log(fk) + 1)
for k = 2, 3, 4, for x4 = 0.5, and α = 0.6. With each power of the Markov
operator more details of the limit measure appear.

5.7 S3 – 600 cell.

Here we provide an example of a quantum fractal on S3, based on the reg-
ular polytope in four dimensions, namely the 600 cell, with Schläfli symbol
{3, 3, 5}. The vertices of the 600 cell are given in the Appendix 1b. (c.f.
also [29, p. 74–75].) Fig. 3 shows a two dimensional projection of the 600
cell as viewed from the direction of the center of one of its cells, while Fig.
8 (top) shows the more perfect (all 120 vertices can bee seen) Coxeter’s
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projection. The inner ring, consisting of 30 vertices is on the torus. We
show the functions log1 0(f1 + 1) and log10(f2 + 1) plotted at the surface
of this torus. The 30 highest peaks that can be seen on the bottom plots
are located at the vertices.

5.8 S3 – 120 cell.

The last example is the 120 cell, with 600 vertices. Fig. 9 (top) shows a
particular projection of this polytope, with one of its 120 octahedral cells
plotted in bold. Below is the plot of log1 0(f2 + 1), for α = 0.9, at the
upper hemisphere circumscribing this cell.

6 Summary and conclusions

In the standard formulation of the quantum theory the imaginary unit
i plays an important yet somewhat mysterious role: it appears in front
of the Planck constant ~, and provides a one–to–one formal correspon-
dence between hermitian “observables” and anti–hermitian generators of
one–parameter groups of unitary transformations. In particular it is nec-
essary in order to write the time evolution equation for the wave function,
with the energy operator (the Hamiltonian) defining the evolution. But the
imaginary “i” is not needed for quantum jumps. In a theory where quantum
jumps are the driving force of the evolution, the real algebra structure, with
a real trace functional suffices. In the present paper we have studied the
simplest case of real Clifford algebras of Euclidean spaces and demonstrated
that from the algebra and from the geometry a natural family of iterated
function systems of conformal maps leads to fractal structures and pattern
formation on spheres Sn. In this way we open a way towards algebraic gener-
alizations of quantum theory that are based on discrete, algebraic structure,
as expressed in the late Einstein’s vision quoted in the Introduction.

Among the open problems we would like to point out particularly the
following ones.

6.1 Existence and uniqueness of the invariant measure

While numerical simulations (see the next section), suggest that for the class
of iterated function systems discussed in this paper, the attractor set and
the invariant measure exists and is unique, we are not able to provide a
mathematical proof. Even if the spheres Sn and balls Bn+1 are compact,
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the Möbius transformations of these spheres are non-contractive. The ques-
tion of existence and uniqueness of invariant measures for non-contractive
iterated function systems has been discussed in the mathematical literature
[25, 26, 27], yet none of the sufficient conditions seems to be easily applicable
to our case. Apanasov has a whole book devoted to conformal maps, yet
we find that his criteria, esp. Theorem 4.16 of Ref. [27], are abstract and
difficult to apply. Therefore the problem of existence and uniqueness of the
invariant measure for IFS–s discussed in the present paper remains open at
this time.

6.2 Fractal dimension as a function of the parameter ε.

Anticipating a positive answer to the above problem, the next important
question is the exact nature of the fractal attractor as a function of the
parameter ε. The numerical simulations seems to suggest that the fractal
dimension of the attractor of our IFSs on Sn decreases, starting from n,
for ε = 0. Yet our attempt to determine its behavior, even for the simplest
case of S1, met an obstacle. We tried to calculate the correlation dimension
for the pentagon case, described in Example 1. To this end we generated
10,000,000 points, using the algorithm of Sec. 4, and plotted, on the log–log
scale the function C(N, r), where r is the distance between two points, and
N is the number of pairs of points within this distance. More precisely, the
correlation dimension D is defined as

D = lim
r→0

log(C(r))/ log(r),

where

C(r) =
1

N2
lim

N→∞

N∑

i,j

Θ(|r − |xi − xj |),

Θ being the unit step function. For the standard Cantor set the correlation
dimension algorithm gives the correct fractal dimension, namely D = 0.63 ≈
log(2)/ log(3). For the pentagon, with ε = 0.58, (cf. Fig. 1) we get a
reasonable straight line with the slope D ≈ 0.9, but with ε = 0.925, when
the expected fractal dimension should be close to zero, we get a staircase.
It is not clear whether this is due to numerical artifacts, or is it a pointer
towards the possible multifractality of quantum fractals for high values of
ε.
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7 Appendix 1a - Hamilton’s Icosian Calculus

Hamilton’s “Icosian Calculus” dates back to his communi-
cation to the Proc. Roy. Irish Acad. of November 10, 1856
[30, p.609], followed by several papers, the last one in 1863. Ac-
cording to the contemporary terminology Hamilton proposes a
particular presentation of the alternating group A5 - the sym-
metry group of the icosahedron.

Account of the Icosian Calculus
Communicated 10 November 1856.

Proc.Roy.IrishAcad.vol.vi(1858), pp.415− 16.

Sir William Rowan Hamilton read a Paper on a new System of
Roots of Unity, and of operations therewith connected: to which
system of symbols and operations, in consequence of the geo-
metrical character of some of their leading interpretations, he is
disposed to give the name of the “ICOSIAN CALCULUS”. This
Calculus agrees with that of the Quaternions, in three important
respects: namely, 1st that its three chief symbols ι, κ, λ are (as
above suggested) roots of unity, as i, j, k are certain fourth roots
thereof: 2nd, that these new roots obey the associative law of
multiplication; and 3rd, that they are not subject to the com-
mutative law, or that their places as factors must not in general
be altered in a product. And it differs from the Quaternion Cal-
culus, 1st, by involving roots with different exponents; and 2nd
by not requiring (so far as yet appears) the distributive property
of multiplication. In fact, + and − , in these new calcula-
tions, enter only as connecting exponents, and not as connecting
terms: indeed, no terms, or in other words, no polynomes, nor
even binomes, have hitherto presented themselves, in these late
researches of the author. As regards the exponents of the new
roots, it may be mentioned that in the principal system - for the
new Calculus involves a family of systems-there are adopted the
equations,

1 = ι2 = κ3 = λ5, λ = ικ; (A)

so that we deal, in it, with a new square root, cube root, and fifth
root, of positive unity; the latter root being the product of the
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two former, when taken in the order assigned, but not in the op-
posite order. From these simple assumptions (A), a long train of
consistent calculations opens itself out, for every result of which
there is found a corresponding geometrical interpretation, in the
theory of two of the celebrated solids of antiquity, alluded to
with interest by Plato in the Timaeus; namely the Icosahedron,
and the Dodecahedron: whereof the angles may now be unequal.
By making λ4 = 1, the author obtains other symbolical results,
which are interpreted by the Octahedron and the Hexahedron.
The Pyramid is, in this theory, almost too simple to be interest-
ing: but it is dealt with by the assumption, λ3 = 1, the other
equations (A) being untouched. As one fundamental result of
those equations (A), which may serve as a slight specimen of the
rest, it is found that if we make ικ2 = µ, we shall have

µ5 = 1, µ = λιλ, λ = µιµ;

so that this new fifth root mu has relations of perfect reciprocity
with the former fifth root lambda. But there exist more general
results, including this, and others, on which Sir W. R. H. hopes
to be allowed to make a future communication to the Academy:
as also on some applications of the principles already stated, or
alluded to, which appear to be in some degree interesting.

Today we know that the group A5 is simple, therefore it has no non–trivial
invariant subgroups, therefore Hamilton’s original comments about models
that assume λ3 = 1 or λ4 = 1 are contradictory.

8 Appendix 1b - The Binary Icosahedral Group

Putting R = ι, S = κ, T = λ4, we can equivalently write Hamilton’s
equations (A) (Sec. 7) as

R2 = S3 = T 5 = RST = 1. (8.36)

Removing the last equality we get the code for the binary icosahedral group:

R2 = S3 = T 5 = RST. (8.37)

It is evident from the definition that Z = RST is a central element of the
group, and it can be shown [31, p. 69 and references therein] that Z is
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of order 2: Z2 = 1. This group if order 120, denoted as 2.A5, and it is
a double cover of the icosahedral group A5. The group has a particularly
simple representation in terms of the quaternions. Let

φ =
1 +

√
5

2
= 1.61803 . . . , Φ =

−1 +
√

5
2

= φ−1 = 0.61803 . . . , (8.38)

be the Golden Ratio and its inverse, respectively. Consider the group G
consisting of 120 elements given by Table 1 below:

Table 1: 120 vertices of the 600 cell

2× 4 = 8 elements of the form (±1, 0, 0, 0), (0,±1, 0, 0),

(0, 0,±1, 0), (±0, 0, 0,±1)

24 = 16 elements of the form (±1
2 ,±1

2 ,±1
2 ,±1

2)

3!× 23 = 96 elements that are even permutations of elements

of the form 1
2(±φ,±1,±Φ, 0).

These 120 elements form a group of unit icossians (cf. Appendix 1a)
that is a finite subgroup of the group Spin(3). For generators R,S we can
take, for instance10,

S1 =
1
2
(1− Φi− φk), T1 =

1
2
(Φ− i− φj), R1 = S1T1 = −i, (8.39)

or an inequivalent set

S2 =
1
2
(1 + φi + Φj), T2 =

1
2
(−φ− i− Φk). R2 = S2T2 = −i. (8.40)

In both cases we have RST = −1, but the two sets of generators are geo-
metrically inequivalent (they are related by an outer automorphism of G ),
the angle between S1 and T1 is π/5 while the angle between S2 and T2 is
3π/5.

10One can check that there are 120 possible choices of triples of quaternionic generators
R, S, T satisfying Eq. (8.37).
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The binary icosahedral group is isomorphic to SL(2, 5), the group of
unimodular 2 × 2 matrices over the field Z5, as can be seen by taking for
the generators R,S, T the matrices:

R =


 0 1

−1 0


 , S =


1 −1

1 0


 , T =


−1 0

−1 −1


 . (8.41)

Fig. 3 shows the vertices of the 600 cell as viewed from the direction
of the center of one of its cells. There is another realization of the 600 cell
as a polytope, due to Coxeter [32, p.247], where all of the 120 vertices are
organized on four different tori within the sphere S3. Let

a =
√

(1 + 3−1/25−1/4φ3/2)/2 ≈ 0.947274,

b =
√

(1 + 3−1/25−1/4φ−3/2)/2 ≈ 0.770582,

c =
√

(1− 3−1/25−1/4φ−3/2)/2 ≈ 0.637341,

d =
√

(1− 3−1/25−1/4φ3/2)/2 ≈ 0.320426,

let θ = π/30, and let the four families, each of 30 vertices, be given by:

a[k] = {a cos(kθ), a sin(kθ), d cos(11kθ), d sin(11kθ)},
b[k] = {d cos(kθ), d sin(kθ), −a cos(11kθ), −a sin(11kθ)},

(8.42)

where
k = 0, k < 60, k = k + 2,

and

a[k] = {b cos(kθ), b sin(kθ), c cos(11kθ), c sin(11kθ)},
b[k] = {c cos(kθ), c sin(kθ), −b cos(11kθ), −b sin(11kθ)},

(8.43)

where
k = 1, k ≤ 60, k = k + 2.
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9 Figures
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Figure 1: Pentagon. 7–th power of the Markov operator applied to f ≡ 1 .

Figure 2: Octahedron – {3,4}. 7–th power of the Markov operator, α = 0.5.
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Figure 3: a) 16 cell - {3,3,3}. 8 vertices, 24 edges, 32 triangular faces, 16
tetrahedral cells. b) 8 cell or Hypercube - {4,3,3}. 16 vertices, 32 edges,
24 square faces, 8 cubic cells. c) 24 cell - {3,4,3}. 24 vertices, 96 edges,
96 triangular faces, 24 octahedral cells. d) 600 cell - {3,3,5}. 120 ver-
tices, 720 edges, 1200 triangular faces, 600 tetrahedral cells. The graphics
was generated by choosing the tetrahedral cell with vertices t0 = (1, 0, 0, 0),
t1 = (φ, Φ, 0, 1)/2, t2 = (φ, 0, 1,Φ)/2, t3 = (φ, 1,Φ, 0)/2, and choosing the
unit vector f1 in the direction of the center of this cell (t0+t1+t2+t3)/4. The
second unit vector f1 was chosen in the direction of f0∗t1, (the quaternionic
product). Then the frame (f0, f1, f2 = (0, 0, 1, 0), f3 = (0, 0, 0, 1)) was or-
thonormalized to (e0, e1, e2, e3) via Gram-Schmidt procedure, and the 720
edges of the 600 cell have been projected onto (e2, e3) plane.
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Figure 4: 16 cell – {3,3,4}. Generated 10,000,000 random points of the
IFS system of conformal maps with α = 0.5. Plotted are 16742 points
whose fourth coordinate is in the slice 0.5 < x4 < 0.51. The picture is
superimposed on the projection of the edges of the 16 cell. Below: Plotted
the fourth power of the Markov operator, more precisely of the function
log10(f4(r)+1), with f4 function defined in Eq.(4.34), calculated for α = 0.5
and x4 = 0.5.
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Figure 5: Hypercube – {4,3,3}. 5 th power of the Markov operator, Eq.
(4.34), with α = 0.6, computed at the section x4 = 0.8. Plotted is the
log10((f5) + 1).
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Figure 6: 24 cell – {3,4,3}. Markov operator levels 2,3 and 4, for α = 0.6,
plotted at x4 = 0.5.
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Figure 8: 600 cell - {3,3,5}. Top: Coxeter’s projection. Below 1st and 2nd
powers of the Markov operator, for α = 0.6 plotted at the surface of the
most inner torus.
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Figure 9: 120 cell – {5,3,3}. 600 vertices, 1200 edges of length (1 −
φ)/

√
(2) , 720 pentagonal faces, 120 dodecahedral cells. One of its do-

decahedral cells in bold. Below the 2nd power of the Markov operator, for
α = 0.9, plotted at the upper hemisphere of this particular cell.
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Figure 10: Correlation dimension plots for the pentagon, for α = 0.58, and
α = 0.925.
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