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We comnsider the causal structure of space-time in the logic approach. The general
form of covariant representations of the Galilean logic, which correspond to a loc-
alizable Galilean system, is found.

1. Introduction

The goal of this work is to start a systematic investigation of the causal structure
of space-time. This structure reflects itself in a structure of the algebra of observables
of a quantum system via the correspondence ¢ — (0) between space-time regions ¢
and the algebras of observables related to ¢ (see Haag and Kastler [5]). For an elementary
particle we can take «/(¢) to be a von Neumann algebra generated by projections local-
izing the particle in subregions of . Unfortunately, by the theorem of Borchers [31,
it is impossible to reconcile such a localization of a relativistic particle with the positivity
of the energy. However, relativistic wave equations (finite or infinite component ones)
are of great importance in spite of the fact that they admit negative-energy solutions.
On the other hand, there is a problem (both relativistic and non-relativistic) of the sat-
isfactory space-time description of unstable particles. Such an unstability induces in space-
time a causality structure which is stronger than in the stable case. This is why we try
to formulate an abstract theory of the causality. The Galilean causality is then discussed
in some details. A general form (not the most general) of a covariant representation of
the persistent Galilean logic is found to correspond to a localization of a distinguished
point of a free composed system (infinite-dimensional Galilean wave equations). A

different approach to similar problems can be found in the work of Barut and
Malin [2].
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2. Causality spaces

DEFINITION.  Let X be a set. A causal structure (or, in short, causality) in X is a struc-
ture defined by a distinguished covering 4 of X by non-empty subsets. The sets from ¢
are called (causal) paths of the causal structure defined in X by 4. A causality space is
a set equipped with a causal structure. If a point x € X is an element of a path I', I' is
said to be passing through x. Two points x and y in X are said to be causally related if
there is some path I” passing through both of them.

DEeFINITION.  Let (X, 9) be a causality space. A subset 4 = X is said to be causally
closed if 4 is a complement of a union of some family of paths. The family of all causally
closed sets is denoted by #.

DeFiNiTION.  We say that a point x is (causally) controlled by a set 4 in causality
space X if each path passing through x passes also through 4. The set of all points con-
trolled by A is said to be a (causal) closure of A and denoted by D(A).

We note that D(A) is the smallest causally closed set containing A:

D) =({I'e¥; I'n4d = a})°

(compare Penrose [6], formula 9.8). Clearly, 4 = B implies D(4) < D(B), and A is
causally closed if and only if it coincides with its causal closure.

DEFINITION. We say that a subset A is controlled by B if every point of 4 is con-
trolled by B. In this case we write

AaB.

In other words, 4B means that every path passing through A is necessarily passing
through B or, equivalently, that 4 = D(B). The relation « is transitive and reflexive.
The relation 4ax B, denoting AaB or BaA, is an equivalence relation in 2%, Clearly,
Aax B means also D(4) = D(B).

The two sets 4 and B are said to be causally equivalent if they have the same causal
closure. If [4] stands for the causal equivalence class of A, then the projection 4 — [A]
admits a natural section [4] - D(4). For each 4, D(A) is the largest set causally equiv-
alent to A.

DEFINITION.  Let 4, and %, be two causalities in a set X, If every path of 4, is
a path of ¢,, then ¢, is said to be weaker than 9., and %, is said to be stronger than ¥, .

If 4, is stronger than ¢,, then every two points causally related in ¢, are causally
related in %,. For every 4 = X the causal closure of A in %, contains the causal closure
of 4 in ¥,. Every set causally closed in %, is causally closed in 4, (if 4, = 4,, then
P, < 79)

DEFINITION. A subset 4 of X is said to be causally connected if every two points of
A are causally related. We say that 4 is causal if there exists a causal path I"which contains
A. A causality % in X is said to be complete if every causally connected set is causal; it
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is said to be persistent if each of its paths is a maximal causally connected set. Every
causally connected (causal) set with respect to ¥ is causally connected (causal) in any
causality %’ stronger than 4.
PROPOSITION 1. Let & be a causality in X. There exists a causality & such that
(1) G is stronger than 4,

(i) 4 is complete,

(iii) 4 and 4 have the same causally connected sets,

(iv) if G isa causality in X which satisfies (i)-(iii), then 4' is stronger than 9.

Proof: Every causally connected set in % is contained in a maximal causally con-
nected set. Let ¥ be a family of all maximal causally connected sets and let ¢ = 9uU¥.
If 4 is causally connected in %, then A is causally connected in 4. Conversely, if 4 is
causally connected in % and x, ¢ are in A, then there is some path I" in ¢ which con-
nects x and y. If r ¢ %, then I' is causally connected in ¢ and so there is I" € % which
connects x and v, and so (iii) holds.

Let us show that % is complete. In fact, if 4 is causally connected in %, then 4 is
causally connected in % and therefore, there exists a maximal causally connected set I
containing A. But then [ is a path in %, and so A4 is causal in 4. Finally, if 4’ is as in
(iv) and Ie %, then I is causally connected, and so there is a path I in € which
contains I". But I™ is causally connected and /™ is a maximal causally connected set, so it
follows that I" = I, g

The causality ¥, uniquely defined by (i)-(iv), is said to be a completion of 4. Let us
observe that if ¢ is already complete, then % coincides with 4.

2a. Orthogonality spaces (see Greechie [4])

We review here the main facts and definitions related to a concept of an orthogonality
space. An orthogonality space is a pair (X, i ), where _ is a symmetric irreflexive re-
lation in X. If x |y, then x and y are said to be orthogonal, and x1is said to be orthogonal
fo A if x is orthogonal to every point of 4. If every point of A is orthogonal to B, then A
is said to be orthogonal to B, and the set of all points orthogonal to A4, which is the largest
set orthogonal to 4, is called the orthogonal complement of A and denoted by 4+. It
follows from the definition that the mapping 4 — AL of 2% into itself has the following
properties:

(i) 4 = A+t
(ii) 4 @ B= B: < A4,
(ili) AnAL = O,
(V) (L A)* = g,
(V) A+ = 441 =
(vi) (AnB)+ 5 A+ UBHL,
(vii) if 4y = 4L, then (7 At = (AP



380 W. CEGLA and A.Z. JADCZYK

PROPOSITION 2.  FEvery mapping A — AL in 2% which satisfies (i)~(iv) is generated
by a uniquely defined orthogonality relation in X.

and irreflexive by (iii). It generates 4 — A+ owing to (iv). m

A subset A of an orthogonality space (X, L) is said to be orthogonal (or, said to be
a | -set) if every two distinct points of A are orthogonal. Every orthogonal set is con-
tained in a maximal orthogonal set. The family of all S+L, where S is a | -set, is said
to be quasilogic of X denoted by &.

Let (X, 1) be an orthogonality space and let “X_1'y” mean that x # y and x is not
orthogonal to y. Thus “_ '~ is also an orthogonality relation in X. The set 4 is said to
be a | -admissible path if A isa : '-set. If for every two points x and y which can be con-
nected by a i -admissible path and for every maximal __-set S'there exists a | -admissible
path intersecting S, then (X, i) is said to be a D-space. If every maximal | -admissible
path intersects every maximal _ -set, then (X, 1) is called an F-space. In a D-space 4
€ .2 implies A+ € &, and %, when ordered by set theoretic inclusion, is an orthomodular
poset.

Let (X, %) be a causality space. There exists a natural orthogonality relation in X
x_ yif and only if x and y are not causally related. We say that “ ! ” is generated by 4.

Let * 1" be an orthogonality relation in X and let % | be the family of all | -admissible
paths. Then %, is a complete causality in X, and __ is generated by %, . Let us note that
in a causality space, “x_ y” means that {x, ¥} is not a causally connected set. Thus caus-
alities with the same causally connected sets have the same orthogonality relation.

Different complete causalities, with different control relations. may generate the same
orthogonality relation.

Let (X, %) be a causality space and let “__" be generated by ¥. Then (X, _)is a D-
space if and only if for every maximal orthogonal set S, and for every pair of causally
related points x and y, there is a z € S which is causally related to both x and y. If ¢ is
complete, the last condition means that if x and y can be connected by a path, then they
can. be connected by a path intersecting S, and (X, _ ) is an F-space if and only if every
path is contained in a path intersecting S (in other words, if every maximal set is a global
Cauchy surface; see Penrose [6]).

Let us observe that in a causality space the operations 4 — AL and A4 — D(A)
commute:

Proof: The relation “x_ y if and only if xe {y}+” is symmetric by (i) and (i),

D(A+) = (D(A)t = 4+,

Thus, & < & and. in fact, we have ¥ = &, = %, where #, is defined as the family
of all those 4 = X for which 4 = 41+, It follows that for every two sets 4 and B in £,
AaB is equivalent to 4 = B and so, if one confines oneself to the study of & or #Z,,
then the orthogonality relation is the only relation one nieeds to concern (except the natu-
ral structure of 2%). In a persistent causality space, which is an F-space, each path
intersects every maximal orthogonal set and so,if Sisan orthogonal set,then D(S) = S+ +.
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3. Galilean causal logic

It is convenient to identify the Galilean space-time X with the tensor product R x R?,
and to characterize every point x of X by its time coordinate x° and space coordinates
x(x', x?, x*). The two distinct points x and y are orthogonal if and only if x° = »°.
Every hyperplane Sy = {y; y® = x°} is a maximal _ -set, and every maximal | -set is
of this form. Every section of the projection #°: x — x° (or rather its image) is a maximal
_i -admissible path, and every maximal i -admissible path is of this form. Thus, (X, | )
is an F-space, and the logic £ of (X, _ ) coincides with the family of all causal closures
of orthogonal sets. If S is an orthogonal set, then S = S, for some x° and either S = S0
and therefore D(S) = X, or § # Sy and then S+ = S,5—S and so D(S) = S++ = §.
The set T, = {z; z = p} is then a path not intersecting S. Therefore, D(S) = S, and so
there is a natural isomorfism of £ onto a disjoint union of Boolean logics %0 = 25°,
Sro—s being identified with:

$=U$x°-
x°

We note that there are no relations between non-trivial elements of different £,0—s.
Thus £ is a complete lattice. It is reasonable to restrict ourselves to the Borel sets in X,
the corresponding logic is denoted by %2,

The action of the Galilean group G on X is given by:

(R, 7,0, a): (xp.x) > (x°+7, Rx+nv+a)
and if g = (R,7,90,4a), g = (R, n,v,a) then
g¢’ = (RR',n+n',Rv'+v, Ra' +a+n'v).

Since the map x — gx is an orthogonality preserving homeomorphism of X, it follows
that G acts as a group of automorphisms of % and Z5.

Let us now discuss in some detail representations of the Galilean logic. To a localizable
Galilean quantum system there should correspond a representation E: S — E(S) of £2
by projections in the Hilbert space # of the system: if {S,} is a sequence of pairwise
orthogonal elements of #5, then E(S,) are pairwise orthogonal and E(VS,) = Z E(Sy).

It follows then, by the weak modularity of #2, that SxS" implies E(S)2E(S"). Owing
to the specific structure of £, it is easv to characterize the most general form of a rep-
resentation E. In fact, if £ is a representation of &% in #, then E,. (the restriction
of E to Z) is a Borel spectral measure on R3. Conversely, if {Eyo}weg is an arbitrary
family of Borel spectral measures on R* then E defined by: E(S) := E, s (7(S)) is a
representation of £®, where m is a projection : (x°, x) — x. In general, different dvnamics
shall lead to inequivalent representations of %2, However, if the external field is not
too singular, the translational symmetry (x° x) — (x° x+a), when restricted to each
of #r0—s5, should be still unitarily implementable. If, in addition, the external field is
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time independent, and the representation E is irreducible, E is necessarily of the following
form:

H# = LR, X, d°x),
(Eo (m(S)) ) () = saesy()f(x),
Exo(T(S)) = U(x°) E, (re(s) JU(x°)*,

where " is some Hilbert space and x° — U(x°) is a continuous unitary representation
of the time-translation group. The only restriction on a dynamics we get from the above
assumptions is rather weak: if g(x°) is the position operator at an instant x°, then
{g(x°)} wer should be an irreducible set. Excluded are thus Hamiltonians H, which are
functions of ¢(x°) only. An interesting and satisfactory restriction on the form of A can
be obtained by restricting to those representations of %2 which admit a conserved current.

4. Covariant representations of the Galilean logic

By a covariant representation of £® we mean a unitary representation g » U(g) of
the Galilei group G and a representation E: S — E(S) of #% by projections such that

U, E(SU* = E(g- S).

In general, U, is a projective representation, with a multiplier, which commutes with
{E(S)}ses. We shall assume that the multiplier of Uis a c-number function. Our goal
is then to find a most general form of £ and U. According to Bargmann [1], the most
general form of a projective representation of G can be obtained from a projective rep-
resentation of its covering group G with a multiplier

U(g)U(g") = e U(gg"),
where
g=1(4,7,v,qa),

g =4,n,7,a), (*)
'
§(g,8) =n (T +v- R,,v') —(a- R0),

and 4 - R, is a 2 — 1 homomorphism of SU(2) onto SO(3). We shall consider only
the case of a # 0. It can easily be seen that, owing to the relations (%), in order to have

UV ES)U(g)* = E(g+S) VSe2,
it is sufficient to assume that for all Se Lo

U(4,0,0,8)Eo(SU(A,0, v, a)* = Eo(R,S+a) (%)
and then to define E,o(S) by .
Ewo(S) = U(xo) Eo (m(S))U(x%)*.
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In order to simplify the discussion, let us replace (%) and (**) by their infinitesimal
counterparts, i.e. a representation of an extension of the Lie algebra of G:

1) Wi, JJ] = ieip e, S) [H,K]= —iP;, (9 [P, P] =0,

(2) [JMH]=09 (6) {H,P,']:O,
3) ¥, Kj] = ig;j Ky, 7 K, Pj] = iaaijs
(4) [Ji’ -Pj] = ier‘jkPk! (8) [Ki’ Kj] =0,

and the commutation relations

(10) [7i, Q)] = ieuQx, (12) [Pi, Q;] = —idy,
(1) [Ki, Q] =0, (13) [Qi, 0,1 =0,

where

Q =\ qdE(q).
Since P and Q satisfy the canonical commutation relations (9), (12), (13), it follows by
the theorem of von Neumann that # can be identified with L3(R3, &, d3x) (the Hilbert
space of square integrable functions on R® with values in a Hilbert space &), and

(P:f) (p) = pif(p),
. of
©@N @ =ig-.
Let M = Qx P; then S = J—M commutes with Q and P and so acts in ¢ only. More-
over, from (1), (4), (10) we get [S;, S;] = ie;S,. Now, let k = K—20Q; then, by (7),
(11), (12), it follows that k acts on " only and that [k;, kl=0, [si, k;] = ieijnke.
Finally, we must satisfy (2), (5), and (6). By (6), H is a function h(p) of the variables

p, and with v(p) = #(p)—p?/2m and T = ei"", we easily find that (T-'vT)p commutes
with P, @, and §. In particular, (T~!9T) (p) = v,, where v, acts on A4 only. The consider-
ations above can be summarized as follows:

PROPOSITION 3. Let A be a Hilbert space and let W{(A) and W(v) be a unitary represen-
tation of the Euclidean group of R® in A. Let v, be a self-adjoint operator in A", which
commutes with the rotations W(A), and let W(x°) = exp(iv,x°). Let # = L*(R®, A, d3x)
and let V(4, n, v, a) be the canonical representation of G in J#, with the multiplier ¢@-9>
given by (x), i.e.

5

(V(4, 1,9, 0)f) (p) = exp (t(iz’;— %)n) exp(~i(p—x0)a)f(R3(p— 10)).

\

Let V(p) be defined by
(V(p)f) (p) = fp' ~p)

and let E, be the spectral measure of the operators Q =i¢/ip, ie.

V(p) = { P dEq(x).
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Finally, let

T = {W(p/a)dE(p),

where E(p) is the canonical spectral measure in J# (i.e. multiplication by characteristic
functions). Then

U4) = V() W(4),

Ulp) = VipTW( T,

Uv) = V(v) W(v),

Ula) = V(a),

and
EL(S) = U@ E, (m(S)) U(n)*

is a covariant representation of the logic #. Every covariant representations of % is of
this form (assuming « # 0). =

From the physical point of view, a covariant representation of % of the above form
describes a localization of a fixed point of a rigid body. The operator T is connected
with a transformation to the center of mass coordinate system. An interesting example
is obtained if one takes W to be an irreducible representation of the Euclidean group
corresponding to spin zero and k% = k2 # 0:

A = L*(Sy,, d2(k)),
(kif) (k) = kif(h),

where S,, = {k; k* = k3}. Every scalar operator v, in o is a function of S? and in the
simplest nontrivial case we can take

S?
'vozﬁﬁ, 8 #0.
0

Then, the Hamiltonian H is given by

Il BY B 28 B
H=P|—— o —S:—-—__1p- HC|——— (P k).
(21+a*)+k§ ez B Bx K+ HCl = — (P )
If 5 # —x/2, this Hamiltonian describes the evolution of a point of mass m; =
%*/(2+28) rigidly connected with a second point of mass my = x—my, k}/m3 being the
distance between the two masses. If 3 = — «/2, we get a system of two infinite masses (of
opposite signs) the total mass of the system being finite.
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