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Abstract
We investigate some aspects of the complex domain S0O(4,2)/(S0(4) x SO(2)) in relation
with relativistic quantum mechanics and conformal invariance.

1. Geometrical aspects of Lie Balls.

In the present paper, we are mainly interested in the four dimensional (complex) Lie ball
that we shall denote by D. This smooth manifold can be written as S0¢(4,2)/S0(4) x
S50(2) or as SU(2,2)/S(U(2) x U(2)). Because of the local isomorphism between G =
SU(2,2) and §O(4,2), D is a bounded non compact symmetric domain of type I and IV.
D = G/H is a Kahler manifold for its G-invariant metric (which coincides with its Bergman
metric) and is also Einstein. D is in particular a complex manifold with (integrable)
complex structure jo. It is also a non compact Hermitian homogeneous manifold for the
action of the conformal group S0(4,2) of Space-Time and is of rank two as a homogeneous
space. Moreover it is a symmetric quaternion-Kahler manifold (hence quaternion hermitian
and quaternionic) but not hyperkahlerian. As such it admits a twistor space which is also a
complex manifold fibrated as a bundle above D with C'P! fibers. As a topological space, D
is homeomorphic with R® and is therefore a manifold without boundary. However, from its
realisation as a bounded domain of C* or from its realisation as a subset of its compact dual,
the Grassmanian SO(6)/(S0(4) x SO(2)), via the Harish-Chandra embedding, it admits a
weak boundary which is stratified under the action of the stabiliser SO(4) x SO(2). One of
the strata is actually a singular four dimensional orbit and is of special interest for us since
it is diffeomorphic with S* x z, S!, i.e. with compactified Minkowski Space-Time. This
particular orbit is both a quotient of S(U(2) x U(2)) by a diagonal SU(2) and a quotient
of the conformal group itself by the semi-direct product of a Poincare subgroup times the
subgroup of dilations. The metric of D is euclidean and blows up near the boundary ( as
in the usual geometry of Lobatchevski) but, what is of particular interest here is that it
induces a conformal Lorentz structure on the boundary. The domain D is a Lie ball in the
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sense that it is a ball for the Lie distance defined as follows. Let

(=a+if = ((1,(2,...,0) € C
(=a—-iB=({,G,- .-, () € CH,
QO = +G+...+ eC,
<(,a>="Ca="C(a; + (az + ...+ (say,
Il = {¢ =< ¢, ¢ >3,

The Lie norm is defined as

L(¢) = (ICI® + VICTE = 112

and the Lie distance between {; and {3 as L({; — ¢z). The Shilov boundary (compactified
Minkowski Space-Time) can be defined as the Lie sphere {{ € C*/||{||? = |Q(¢)] = 1}. The
domain D also admits an unbounded realization: the future tube. It can be defined as the
space of all w = z + 1y, with z € R* and y € R* with the constraint y2 —y? —y2 —y2 > 0.
The map sending the bounded realization of D (the Lie ball) to the unbounded realization
(the forward tube) is a generalized Cayley transform (the usual Cayley transform sending
the open unit disk to the upper half plane). This last unbounded realization of the Lie
ball admits a simple physical interpretation. Indeed, by computing the expression of the
momentum map (the Poincare-Cartan form) on D viewed as a symplectic manifold with
a symplectic action of the group SO(4,2), one can show (3] that the imaginary part y of
2z = z + 1y can be interpreted as the inverse of a momentum (it is associated with the
translation subgroup of SO(4,2). it is therefore natural to set p* = y*/y%. Points of the
domain D describe therefore both the position (in space and time) and the momentum
(with p? > 0) associated with a physical event. The domain itself becomes therefore
a curved relativistic phase-space. Interpretation of Im(z) as an inverse momentum is an
obvious four-dimensional generalization of what is done in usual wavelet analysis (where the
variable v in z = ¢ +i/v is interpreted as a frequency). Special conformal transformations
act both on Space-Time and inside the domain but they do not act in the same way [7].
Introducing a constant h and setting z = = +1hp/p?, it can be shown [3] that the action of
the conformal group G on Space-Time (variable z) and on its cotangent bundle (variable
p) can be gotten from the action of G on D but only in the h goes to zero limit.

2. Analytical aspects of Lie balls.

The group SO(4,2) defined in a purely algebraic way as the group of conformal trans-
formations for a Lorentzian Space-Time of signature (1,3) coincides with the group of
analytical diffeomorphisms of the Lie ball D. It is also interesting to notice that the
same Lie ball appears as the harmonicity cell of the four-dimensional Euclidean ball [1].
Representations of the maximal compact subgroup of G = SO(4,2) can be used to build
equivariant vector bundles over the Lie ball D. The space of sections of these bundles pro-
vide representation spaces for G via the induction mechanism. Is is then possible to define
a scalar product in such a space of sections and consider subspaces of holomorphic (or
anti-holomorphic) square-integrable sections carrying irreducible unitary representations
of G. It is possible to define a Bergman kernel for each of these spaces. Let us only mention
here how to construct this kernel in the following particular case: we consider holomorphic
densities of weight 1 on D, i.e., holomorphic sections of the line bundle corresponding to

49




R. Coquereaux / Lie balls and relativistic quantum fields

the representation A — det(A4) of GL(n,C). These sections are therefore holomorphic
n-forms of type (1,0). Indeed & = ®(z)d*z = &'(2')d*z’ with &'(2') = [det(dz/02')]|2(2).
They can be defined (locally) as holomorphic functions in each coordinate system. Realiz-
ing the space D as a bounded domain of C*, we build the Hilbert space ‘H? of holomorphic
n-forms of type (1,0) that are square integrable w.r. to the measure d*zd*z of C*. The
Bergman kernel "function” of D associated with this line bundle, in this bounded realiza-
tion, is then defined as k(z,%) = B9n(2)¥n(w). It is therefore itself a holomorphic (resp.
anti-holomorphic) density of weight 1 w.r. to z (resp. w.r. to w). The previous scalar
product can also be written as

@)= [ s = [ E25Daue)

where du(z) = k(z,Z)d"zd"z is the intrinsic measure of D associated with its Kéhler
metric. The Bergman kernel has the reproducing property

f(z) = /D F(E)k(z, €)dvol(E),

where f is in H?. The Bergman kernel can be also constructed for other choices of asso-
ciated vector bundles. In the present situation, there is (up to a normalization factor) a
unique vector in H?, that is orthogonal to all the 4 that vanish at the point z of D. The
coherent state (of unit norm) at the point z is therefore defined precisely as this unique
vector. It will be denoted by |z >. This is actually a very general definition of coherent
states, it works whenever the evaluation functional vanishes on a hyperplane and is con-
tinuous. This definition was given in [3). The basic relations of the calculus with coherent
states can be written using the traditional (and very convenient) notations of quantum
mechanics. They read as follows. Calling |[¢p > an arbitrary element of H?, |¢n > an
orthonormal basis and %(z) the evaluation of ¥ at the point z, we have:

k(z,2) = B¢n(2)$n(2)
< zlp > = 9(2)/k(2,2)'/?
< Plz > = P(2)/k(2,2)'/?
< Pulz > = (i)n(z)/k(z,z)l/2

1=|¢n >< ¢nl
12> = 1|z >= Z|¢n >< $ulz >= B¢n(2)/k(2,2)"/?
<zlz>=1

< z3lz1 > =% < 22|pn >< Pnlz1 >= k(fz,zl)/k(fm22)1/2’0(51:21)1/2

1= /lz >< z|k(Z,2)dzdz

The last equation displays the reproducing kernel property. To each function f € £? (not
necessarily in H?, i.e. not necessarily holomorphic) we associate an operator F acting in H?
defined as F = [ |z > f(z) < z|du where dpu = k(Z, z)dzdz is the natural invariant measure
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on the Lie ball. Calculations are very similar to those made in non relativistic quantum
mechanics using the Bargman coherent states associated with the harmonic oscillator.
The Bargman kernel ezp(—Zz) is here replaced by the Bergman kernel of D (calculated by
[6]) i.e. k(zZ,z) = (2°4!/7*)1/[1 + 2%2% — 22z]*. This approach to the pseudo-differential
calculus on classical domains has been investigated already in [2], (cf. also [8]) but what
makes it into a new and open subject is the physical identification of Space-Time with
the Shilov boundary of D together with the interpretation of the imaginary part of the
complex variable z, = z, + iy,, in the unbounded representation, as the inverse of a
momentum(y, = p,/p?). Notice that, in this representation, the Bergman kernel for
holomorphic densities of weight 1 is equal (up to a constant) to 1/[(z1 — 22)?]*. Here the
square is computed with a Lorentz metric of signature + — ——. We should recall here
the analytic definition of the Shilov boundary S, namely, the smallest closed subset of
the boundary where every element of any set of (non constant) holomorphic functions in
the domain reaches its maximum (in module). Elements of the various Hilbert spaces of
interest usually approach a distribution when their argument tends to the Shilov boundary
S. Only elements of a small subspace of these Hilbert spaces approach square-integrable
functions on §. Conversely, distributions (or hyperfunctions) on S can be extended to D.
Notice in particular that any holomorphic bounded function in D can be written as

(z) = / O dl0),

where du is a measure on S, and s(z,¢) is holomorphic in z and integrable with respect to
du in (. The kernel function s(z,() is called the Szeg6 kernel of the domain. This suggests
that a relativistic analogue of the wavelet transform [4],[5] should be defined via the use
of the Szeg6 kernel.

The study of analyticity properties of n-points functions is a rather traditional field
of research in Relativistic Quantum Mechanics and in Quantum Field Theory. Many
results are known thanks to the work of a generation of theoretical physicists (and in
particular thanks to the efforts of Raymond Stora [9-12] who has always been a master in
this area (and in others..!)). What we suggest here is a kind of different game: analytic
continuation from the real line to the complex plane, with its flat euclidean geometry, is not
the same as going from the real line (or from the circle) to the Poincaré upper half-plane
(or to the disk), with its curved Lobatchevskian geometry. This one-dimensional (complex)
comparison (and contrast) sits at the roots of the message carried by the authors of [3].
Our belief is that Physics is ”simple” (and euclidean) in the domain D and that many of the
difficulties of classical or quantum physics arise because we try to go to the "boundary” and
to formulate the laws of Physics there. Many mathematical properties of the space D (and
of other classical domains) are already known but the use of those properties in Physics is
a new and open subject. In particular, new physical intuitions have to be developed (for
instance, everybody knows what the Fourier transformation is, and understands its physical
interpretation, but here, what we have is rather a (Radon)-Gelfand-Graev transformation
-i.e. integration over horocycles- and its physical interpretation is quite different and not
necessarily familiar...). Much remains to be done. Here, we have only sketched a few
properties of the appropriate mathematical structures (more can be found in {3]). The
present article is also a kind of invitation to further study.
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