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Abstract. A theory of graded Banach modules over a Banach-Grassmann 
algebra is developed and applied tod.ifferential geometry of super-manifolds. 
The explidtstru~ture _of superspacescarryingPoincare supersymmetryand 
extendedsupersymmetry, including central charges, is described. 

1. Introduction 

Recentiy Alice Rogers [1] introduced a concept of supermanifold which seems 
·to have some advantages over previous approa~hes. The-idea is to fix a Grassmann 

. . -:_,a.lgebraBL (the number_ofodd generators L being possibly infinite), equip it with 
, . a'Banachnorm, and then work with Banach manifblds 'exploiting at the same 

time the Grassmann algebra structure. The present ' paper is inspired by this 
idea with the aim of improving a few unsatisfactory aspects of [1] and showing 

,', ''I on explicit examples of physical interest how this theory works in practice . . ,. 
'~ :: Alte~ analysing the mathematical structure involved in [1] we havefourtdthat 

. there are ,only,{ew-properties of BL which really matter. Therefore we have in..; 
. . troduced a concept of aB,anach-'Grassmarina.lgebra Q (Sect. 3) which, in general; 
•. ~ . ,p.~ed not hav~a denumera.ble ·setof.odd generators. The most important property ' 
~'~. of Q (apart .of the fact that Q is Z2-graded: Q = Qo ffi Ql) is its self-duality (see 

Definition 3.1a). ,So, We work with the category of graded Banach modules over 
Q, the fundamental principle being that of Qo-linearity of all linear maps. Once' 
the category is fixed and fundamental principle taken into account, all the theory _ 
becomes simple and quite elegant. In particular the tangent bundle ofasuper
manifold has exactly the same .meaning as in ordinary differential geometry. 
Tangent vectors are tangent to one-'parameter curves, and vector fields genera~e 
flows along their integral curves. Appealing to derivations is possiblebut.uot 
necessary. "Odd" vectors are well-defined geometrical objects, and cat;l becons'
truded at any giyen point from tangent ve'ctors in a canonical way, their .only 
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role being that of providing a finite Q-module basis if such a basis is, at some 
step, convenient to use. Section 7, where geometrical structure of supersymmetric 
superspaces is described, may seem unnecessarily complicated but it was written 
so as to illustrate this point of view. When we talk thereabout vertical and hori
zontal subspaces, they are really two complementary subspaces of the tangent 
space, one having a finite Qo-module basis while the second not. When we talk 
about principal or affine connections we do mean integral transport along path. 
And when we discuss symmetries, we mean diffeomorphisms of the manifold 
which transport fibers into fibers, preserve scalar products, preserve Qo-module 
structure of tangent spaces etc. 

We do not discuss problems of supergravity here, but from our discussion 
of supersymmetric superspaces a local geometrical meaning of supergravity • 
theories should be clear: a curved superspace is a superspace of which each 
tangent space has' exactly the same structure as a typical tangent space of the 
supersymmetric one. Although we do not touch global questions in this paper 
(Proposition 5.5 being the only one related to global problems), one should bear 
in mind that even unquantized supergravity can produce effects which are far 
from being purely classical ones: there can be regions of superspace where, owing 
to curvature effects (hereby "curvature" we mean a general nonintegrability 
of vertical and horizontal distributions), a quotient real four-dimensional mani-
fold of General Relativity fails to exist. Equivalently, one can meet singularities 
in space-time which are not at all singularities in superspace. 

2. Algebraic Preliminaries 

This section consists mostly of definitions and statements which are immediate 
consequences of these definitions. We deal here with graded Banach modules 
over graded-commutative Banach algebras. All gradings of this paper are Z2 
gradings, and we simply use the term "graded" to mean "Z2-graded". The indices 
r, s always run over Z2 ~ {a, 1}, and sums like r + ... + rk are always understood 
mod (2). 

A Banach space F over K(K = [R or C) is called graded if two complementary • 
subspaces F 0 ' F 1 C F are distinguished so that F = F 0 F 1 as a vector space, 
and such that the canonical projections Pr : F ~ Fr are continuous. 

For each graded Banach space F the canonical involution J : F ~ F is defined 
by J ~ PoP l' so that aEFr if and only if J(a) ( 1t a. 

If F1, ... ,FP are graded Banach spaces, then the canonical involutions J1, ... JP 
determine the involutive linear map J ~ J1 ® ... ® JP of the algebraic 
tensor product FlO ... 0 FP. If F' is also a graded Banach space, and if 
f x ... x FP ~ F' is a p-linear map, then f can be considered as a linear map 
f :Fl 0 ···0 FP ~ F'. One defines then two maps 21'r ~ fr ~ f + ( - 1t J'fJ(r = 0, 1), 
where J' is the canonical involution of F', so that f = fo + f

1
• The map f is called 

even (resp. odd) if f = fo (resp. f = f 1). It follows that a p-linear map f is 
even (resp. odd) if and only if 

• 
" 

• 
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where Vi,EFi.(i = 1, ... ,p), and r = O(resp. r 1). . r, r, 
A p-linear map f: F x ... x F ~ F' is graded symmetric (resp. graded skew-sym-
metric) if 

where v~iEF~/i 1, ... ,p), k = 1, ... ,p - 1, and r ° (resp. r = 1). 
A graded-commutative Banach algebra is a Banach algebra Q (with, or without 

unit) which is at the same time a graded Banach space Q = Qo EB Q
1 

such that 

(i) aras ( - tSasarEQr+s' arEQr' asEQs' 

(ii) II ao + a1 II = II ao II + II a1 II, arEQr' 

The canonical involution J is then an isometric automorphism of Q. 
Let Q be a graded-commutative Banach algebra, and let F be a graded Banach 

space. If F is also a left and right Q-module such that 

arvs = ( - lysvsarEFr+s 

for arEQr' VsEFs' and if the map Q x F3(a, v) H- aVEF is continuous, then F is 
called graded Banach Q-module. Observe that if F is initially endowed only with 
right (resp. left) Q-module structure, then the above formula can be considered 
as a definition of the left (resp. right) action of Q on F. 

It should be noticed that every Q-module can be always considered as a 
Qo-module. The most important Qo-modules we shall deal with are 

Qo' Ql' Qm,n ;:;:(QorEB (Ql)n, Qm,ii ~ (Q1)mEB (Qo)n. 

The elements of Qm.n(resp. Qm.n) are sequences (aA)A=l, ... ,m+n' written also as 
(d', d()Jl.= 1, ... ,m;a= l, ... ,n' with aJl.EQo and aa EQ1 (resp. aJL EQl' aaEQo)' The norm 
is given by II a II ~ L II aA II· The symbol I A I means ° for A 11,1 for A = a. The 

A 

most important graded Banach Q-modules are the modules Qm+n graded by 

(Qm+n)o ~ Qm,n, (Qm+n)l ~ Qm,n. 

The elements of Qm+n are represented by sequences (aA)A=1, ... ,m+n with aAEQ. 
The group of invertible Qo-linear maps Qm,n ~ Qm,n is denoted by GL(m, n). 

Let Fl, ... ,FP, F' be graded Banach Q-modules, and letf:F1 x ... x FP ~ F' 
be a continuous p-linear map. Then f is called left p-Q-linear if 

where V~iEF~i(i = 1, ... ,p), k = 1, ... ,p, and arEQr' The space of all continuous 
left p-Q-linear maps, denoted by LL(F1, ... ,FP ;F') and graded 

LL (F1 , ... , FP ; F') = LL (F1 
, ••• , FP ; F')o EB LL (F1, ... , FP ; F')l 

according to whether a map is even or odd, is a graded Banach Q-module with 
its Q-module structure given by 

(fa)(v l
, ... , vP) ~ f(v l , ... , vP)a, 

for aE Q, Vi E Fi(i = 1, ... ,p). Similarly the space LR(F I , •.. ,FP ;F') of all continuous 
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right p-Q-linear maps g: F1 x ... x FP ~ F' is a graded Banach Q-module with 
its Q-module structure defined by 

(ag) (v 1 , ••. , vP) ~ ag( v 1 , ... , vP) . 

IffELL(R)(F1, ... ,FP ;F'), thenf' defined by (f,.)' ~ (J'Y°f, where J' is the canonical 
involution in F', is an element of the space LR(L)(F 1, ... , FP ;F'). In particular 
LL (F1, ... ,FP; F')o = LR(F1, ... ,FP; F') ~ LLR (F 1, ... ,FP; F')o' 

Let E1, ... , EP be Banach Qo-modules (ungraded), and let F be a Banach 
graded Q-module. Then L(E1, ... ,EP ;F). is the graded Banach Q-module of all 
continuous p-Qo-linear maps from El x ... x EP to F. The grading is given by 
L(E1, ... , EP ;F)r ~ L(E1, ... , EP ;FJ If E is a Banach Qo-module, then the graded 
Banach Q-module L(E ;Q) is denoted by Et. If E, E' are Banach Qo-modules and 
if fEL(E ;E'), then ft ELLR(E't ;Et)o is defined by , 

(ft(w))(v) ~ w(f(v)), WEE't, VEE. 

The mapfl-+ ft from L(E ;E') to LLR(E't ;Et)o is Qo-linear and 11ft II ~ Ilfll. The 
graded Banach Q-module LR(Et ; Q) of all continuous right Q-linear maps w : Et ~ Q 
is denoted by Ett. Ea9h element vEE determines the element vtt EEtt given by 

vtt(w)~ w(v), wEEt. 

The map v 1-+ vtt from E to Etto is Qo-linear and II vtt II ~ II v Ii. The above 
construction is analogous to that of complexification of a real vector space. 
One starts there with a real vector space E and considers the space Et of all real 
linear maps from E to C. The space Et carries then already complex structure, 
so that Ett is naturally defined as the space of complex linear maps from Et' to C. 

3. Banach-Grassmann Algebras 

Let Q be a graded-commutative Banach algebra, and consider Q as a Banach 
graded Q-module. The product map (a, b) t-+ ab can be then interpreted as a 
graded symmetric element of LiR (Q ;Q)o' In other words Q is endowed with a 
canonical, even, Q-valued bi-Q-linear form. One may therefore ask whether Q 
is self dual o{ not. Selfduality is one of the two requirements each Banach
Grassmann algebra should satisfy (see Definition 3.la and Proposition 3.1 ii). The 
second important property we require is that the odd elements of Q generate 
all the algebra except of its scalar part. ' ' 

Definition 3.1 A graded-commutative Banach algebra Q over K(K [R or C) 
is called Banach-Grassmann algebra (BG-algebra, in short) if 
(a) For each continuous Qo-linear mapf:Qr ~ Qs there exists a unique element 

UEQr+s such that II U II = II f II and f(a) = au (equivalently, f(a) ua) for all 
aEQr" . . , 

(b) Qo KEB Q~, with II A + s II = II}, II + II s II for AEK, SEQ~, where Q~ denotes the 
Banach subalgebra of Qo generated by even powers of elements of Q1 . • 

Remark. It follows alread from a) that K c . We do not know to what"extent 

• 

I 
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a) implies b). One can prove (see [2]) that the graded Banach algebra Boo cons
tructed in [1] is a BG-algebra. 

The following Proposition points out the most important properties of any 
BG-algebra. 

Proposition 3.1 The following properties hold for any BG-algebra Q. 
(i) For each aEQ, 

Iiall =sup{lIayll :YEQl' IIYll = I} =sup{llyall :YEQl' IIYII = 1}, 

in particular if ay = o (resp. ya = 0) for all YEQl' then a = O. 
(ii) For each fELL(Q ;Q))resp.fELR(Q ;Q)J there exists a unique element UEQr 
such that 

f(a) = au (resp. f(a) = ua), aE Q. 

(iii) For each element aEQ' ~ Q~ EB Q1' and for each 0 < () < 1, there exists a ~ 0 
such that 

II an II ~ a()n for n == 1, 2, .... 

(iv) The spectrum of every element aEQ consists exactly of one point a(a)EK, 
and the map a: Q ~ K is a unique non~zero character of Q. 
(v) An element aEQ is invertible if and only if a(a) =1= 0.' Then 

00 

a-,l a(a)-I I ( - l)n(s(a)ja(a))n, 
n=O 

where sea) a - a(a)EQ'. 
(vi) For each Qo-linear, not necessarily continuous, map f:Q

1 
~ Q one has 

(T(f(y)) 0 andf(y)z + f(z)y = 0 for all y, ZEQI' 

Proof (i) is just an explicit expression of the fact that the nonn of f: a ~ au is 
II u II· To prove (ii) observe that, since f is in particular Qo:-linear, (a) implies that 
h . I 0 1 s t ere eXIst twoe ements u, UEQr such thatf(as) = asu for asEQs' Butfis assumed 

to be also left Q-linear. Therefore for every YEQI we have 

s , 1'( ) f( ) (..)s + 1 . s + 1 yasu = YJ as = yas = yas u = yas u , 

and (i) implies that it = st i
. The property (iii) follows by observing that Q' has a 

dense subspace of nilpotents'(owing to b), and then the proof of Lemma 2.7b of 
[1] can be applied verbatim. The map a:Q ~ K is uniquely defined by a = a(a} + 
sea), with a(a)E K, s(a)EQ', and a is evidently a non-zero character of Q. It follows 
that if a-I exists, then a(a) =1= O. Conversely, ifa(a) =1= 0 then the series in (iv) con
verges by (iii), and therefore a-I exists. Thus a(a) is the only point of the spectrum 
of a. If a' is a continuous multiplicative linear map from Q to K, then at annihilates 
all nilpotents and consequently it annihilates Q'. Being non-zero it has to coincide 
with a. Finally, iff:QI ~ Q is a Qo-linear map, then for every y, Z, XEQl we have 
f(y)zx =f(yzx) - f(z)yx, and (i) impliesf(y)z + f(z)y = O. In particularf(y)y= O. 
If a(f(y)) =1= 0, then by (v) f(y) is invertible and consequently y = 0 which is a 
contradiction. Therefore a(f(y)) = O. n 
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4. Vector Superspaces 

Vector superspace is essentially Qm,n (or Qiir,ii, resp. Qm+n) with understanding 
that two elements related by a transformation from GL(m, n) represent the same 
abstract vector but in two different coordinate systems. Since Qm,n is a Qo-module 
which is not finitely generated, we are forced to use coordinate systems rather 
than bases. However, as we shall see, a general method of imbedding a vector 
superspace of the type Qm,n into a vector superspace of the type Qm+n exists. 
Since Qm+n is finitely generated Q-module with m + n generators, a difference 
between bases and coordinate systems is not an important one. Our reason for 
investigating vector superspaces of the type Qm,n is of geometrical nature: tangent 
spaces to supermanifolds are of this type, and although one can always construct 
the graded tangent space of the type Qm+n, the "odd tangent vectors" are not • 
tangent any longer (a more adequate intuition should picture them as being 
orthogonal to supermanifold). The main objective of this section is to show a 
mechanism by which every vector superspace acquires its odd counterpart. 

Definition 4.1. An (m, n) (resp. (m, n), resp. (m + n) ):'dimensional vector superspace 
is a pair (E, tP), where E is a set and tP is a non-empty family of bijections (called 
coordinate maps) <1>3</J:E -+ Qm,n (resp. QffI,ii, resp. Qm+n), such that for every pair 
cp, cp' E<1> we have cp' 0</J-1 EGL(m, n). If (E, tP) and (F, tf') are vector superspaces of 
the same dimension, then an isomorphism between (E, tP) and (F,tf') is defined as a 
pair (i, j) of bijections i: E -+ F and j : <1> -+ tf', such that j( cp ) 0 i = cp for all cp E <1>. 

The simplest examples of superspaces are Qm,n, Qm,ii and Qm+ n. They will always 
be endowed with just one coordinate map-the identity map. In the following 
the term "vector superspace" will denote a vector superspace of some finite 
dimension. Observe that a vector superspace of dimension (m, fi) can be also 
considered as having dimension (n, m), and vector supers pace of dimension (m + n) 
can be also thollght of as having dimension (m + n, m + n) and a restricted family 
of coordinate maps. A distinction between the three types is, however, convenient 
when one deals with different 'superspaces construbted out of a given one. 

If (E, <1» is a vector superspace, then tP can be uniquely completed to <1>' :::) <1> i.' ..... 
so that for each AEGL(m,n) there exist </J, </J'E<1> such that cp' ocp-1 = A. Although 
such a completion is always possible, we shall not demand of tP to be complete. 
If E is endowed with an additional geometrical structure (like metric and/or 
torsion tensor), then natural restrictions on coordinate systems can be imposed. 
Usually, however, the set {cp'0</J-1 :cp,</J'E<1>} is a subgroup ofGL(m,n). 

Let (E, tP) be a vector superspace. Each element CPE<1> induces on E the Qo
'module structure: av ~ </J-1(a</J(v)), aEQo' VEE. It also induces the Banach norm 
II V II ~ II cp(v) II· If cp is replaced with cp'EtP, then the induced Qo-module structures 
coincide, and the induced Banach norms are equivalent. In this sense each;1:yector 
superspace will be considered as a Banach Qo-module. If (E, tP) and (F, itf') are 
vector superspaces of the same dimension, and if j : tP -+ tf' is a bijectiqh such 
that j(</J')j(</J)-l = </J'cp -1 for all cp, </J' EtP, then i ~ j(</J)-1 ocp is independent of' 
</JEiJ!, and is a Qo-linear bicontinuous bijection from E to F. The pair (i,j) is then 
an isomorphism between (E, tP) and (F, tf'). 

Let (E. tP) he a vector sunenmace of dimension (m. n) and Jet Et be the d 
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the Banach Qo-module E. Given CPEtP and wEEtr, the map 0)0</J~1 :Qm,n..:,. Q
r 

is 

continuous Qo-linear. Therefore there exists a unique element (WA)E(Qm+n)r 
such that 

(wo¢-1)(a) = aAwA' aEQm,n. 

It is evident that the map ¢t : W H- (w A) from (Et)r to (Qm+n)r is an isomorphism 
of Banach Qo-modules. Moreover, given cp, cp' E tP, we have 

~to(~'t)-l =</J'o~-1 
o 

on (Qm+n)r' Let tPt :;;'{cptE£) lpt : </JEtP). Then (Et, tPt) is a vector superspace of 
dimension m + n, and every coordinate map </J t : Et -+ Qm + n is an isomorphism 
of graded Banach right Q-modules. 

We note here the following isomorphisms which follow immediately from 
Corollary 3.1 and Proposition 3.3. 

Proposition 4.1. Let E, F be vector supers paces of dimension (m, n) and (m' n') 
respectively. Then the following Banach Qo-modules are isomorphic (we denote 
1;>y the. same letter ftwo maps.related by the isomorphism). 

(i) L(£;F) ~ LR(Ft ;Et)o ~ L(Fb ;Eb), the isomorphism being given by 

w(f(v)) = (f(w))(w), WEpt, 

(ii) L2(E ;Qo) ~ L(E ;Et 0)' the isomorphism being given by 

f(v, w) = (f(w))(v), v, WEE, 

(iii) L2(E ;F) ~ L(Ft 0 ; L(E, Et 0))' the isomorphism' being given by 

w(f(v, w)) = {(f(w))(w))(v), v, WEE, wEFto' o 
Let (E, tP) be a vector superspace of dimension (m, n), and c6nsider the.'second 

dual Ett of E. Every coordinate map ¢EtP defines the coordinate map cptt :w 1-+·(wA
) 

from Ett to (Qm,n)tt ~ Qm+n by 

w(w) WAcpt(W)A' wEEtt, wEEt. 

If cp, </J' EtP, then </J,tt ocptt -1 = </J' ocp -1, and if VEE, the~cptt(vtt) = </J(v). It follows 
that Ett = Ett 0 EB Ett 1 is a superspace of dimension (m + n), and E can be canoni
cally identified with Ett o' The vector superspace Ett 1 of dimension (m, fi) will be 
denoted by E and called the odd complement of E. The second dual Ett under
stood as E E£) E will be denoted by E. 
Proposition 4.2. Let E be a vector superspace of dimension (m, n), and let 
WE L(E, QJ There exists a unique map mE L(E ; Qr + 1) such that cO W'E£) mE 
LL(E, Q)r' 

Proof. Choose a coordinate map cp, and identify E with Qm,n and E with Qiir,ii. 
Then W is represented by (w A)E(Qm+n)y so that 

W V = VAw, VA E m,n 
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VEE. 

It is then easy to see that ill satisfies the statements in the Proposition. 0 
The following important Corollary is an easy twofold generalization of the 

above result. 

Corollary 4.1. Let , ... , EP, F be vector superspaces, and letfELP(E1, ... ,EP;F). 
For each subset K c: {1, ... ,p} there exists a unique OJ EL(E1' ... EP" F')-where 
Ek' Ek'f k k' -k - K ", I EK, E = E if k¢K, and F' = Fr with r = t(l - ( -1)P-k)-such that 

OJ ~ E:p OJKELL(El, ... ,EP ;F)o' If E1 = ... = and OJ is symmetric (resp. skew
symmetr~c), then ill ~ OJcp is skew-symmetric (resp. symmetric), and w is graded 
symmetrIc (resp. graded skew-symmetric). . 

. It is important to notice that while a vector superspace E of dimension (m, n), 
wIth n =1= 0, do not admit a finite Qo-module basis, its second dual E is a finitely 
generated free Q-module. Namely, given a coordinate map </J:E --4 Qm,n, the 
vectors ellEE(fl = 1, ... , m) defined by</J(e,JA = J:, and the vectors ~EE(cx 1, ... ,n) 
defmed by (fi(elX)A = J~, form up a fmite (left) Q-module basis for E. This fact is an 
important technical advantage of exploiting the odd complements of vector 
superspaces. 

We shall define now the underlying vector space of a vector superspace. Let 
(E, tP) be a vector superspace of dimension (m, n)(resp.(m~n», and let a be the 
clos~d sub~pace of E consisting of all vectors VEE for which u(</J(v» 0 for all 
(eqUIvalently: for at least one) </JEtP. The quotient space EEla is then an m
dimensional (resp. n-dimensional) vector space over K called the body of E. The 
canonica.l project. ion E --4 E wi~ be ~gain denoted by (J. Each coordinate map 
</JEtP defmes the Isomorphism </J of E onto Km(resp. Kn). If (E, tP) and (F, '1') are 
vector super~p~ces of dimensions (m, n) and (m', n') respe~ti:,ely, ... and iff EL(E ;F), 
~hen (J of anmhilates 8 and therefore defines a linear map f: E --4 F such that (J 
foa;... The K-linearmapJis called the even body off. The odd body off is defined 
as J, and is a K -linear n;ap from (J(E) to (J(F). In coordinates J is represented by 
the matrix u(f:') while lis represented by the matrix (J(falX'). 

5. Supersmooth Functions 

In this section we introduce the concept of supersmoothness of functions from 
~m,n to Q. Our discussion of superdifferentiability is simpler than the one given 
m [lJ. In particular, knowing already that a function f is a COO map between 
Banach spaces, we need only to look at its first derivative to know whet:p.~r f is 
supersmooth or not, while in [lJ an investigation of all derivatives was nece'ssary. 
Nevertheless the two concepts, ours of supersmooth ness, and GOO-differentiability 
of [1], are equivalent. 

We take it for granted that the reader is acquired with elements of differential 
calculus on B~nach spaces (a useful reference text-book being [3]). For the 
sake of convemence we recall that a function : E --4 F from a Banach s 

• 

• 
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to another Banach space F is differentiable at xoEE if there exists a continuous 
linear map (Df)(xo):h --4 (Df)(xo)'h from E to F such that 

f(xo + h) - f(xo) (Df)(xo)'h + O(h) , 

where O(h)j II h 11--4 0 with h --4 O. Iff is differentiable at every point x in an open 
neighbourhood of xo' then one considers the function x H (Df)(x) from E to the 
Banach space !£l(E ;F) of all bounded linear operators from E to F, and f is said 
to be twice differentiable at Xo if Df is differentiable at xo' The second derivative 
offat Xo is then defined as the first derivative of Dfat Xo and denoted by (D2f)(xo)' 
It follows that D2f is a function from E to !£l(E ;!£l(E ;F». One then identifies 
!£l(E;!£l(E;F» with !£l2(E;F) by writing ((D 2f(a»'h)'h' = (D2f(a»'(h, h') much in 
the same way as the second derivative ofa functionf: IRin --4 IR can be considered as 
a bilinear map from IRn to IR given by 

(h, h') --4 0 Ilvf(a)hllh'v. 

If D2f exists and is continuous in a neighbourhood of Xo then the bilinear 
map D2f(xo) is symmetric (partial derivatives commute). If D"f(x) exists for all 
XE U c: Eand n 1, 2, ... , then f is said to be Coo(U). Dnf(x) is then a· symmetric 
p-linear map from Ex ... x E to F. 

Defmition 5.1. Let Q be a BG-algebra, and let U be an open subset of Qm,n, A 
supersmooth function on U is a smooth (i.e. COO) mapf:U --4 Q.such that Df(x)E 
L(Qm,n ;Q) for all XE U (i.e. Df(x) is required to be not only linear but also Qo
linear). 

Observe that iffandg are two supersmooth functions on U, thenf + g,fg, and 
J of are also supersmooth. These operations make the set of all supersmooth 
functions into a graded commutative algel;>ra denoted by Q(U) .. The algebra 
Q(U) contains Q as the subalgebra of constant functions. Therefore Q(U) is also 
a graded Q-module. . 

A function f: U --4 Qm',n' is called supersmooth if all its components jA' : 
U·~ QIA'I are supersmooth. The set of all such functions is denoted by Q(U ;Qm',n,) 
and is an Q(U)o -module. 

Proposition 5.1. Let f: U --4 Q be a supersmooth function· defined on an open 
subset U c: Qm,n. Then for each integer p = 1,2, ... , and for each XE U, we have 
DPf(x)EIY(Qm,n ;Q). 

Proof. We prove it by induction. Suppose we already know that DP- 1f(x) is in 
1Y~ 1(Qm,n ;Q) for all XE U. Then, given XoE U, we have DPf(xo) D(DP- 1f)(xo)' 
and therefore DPf(xo) is a continuous linear map from Qm,n to u- 1(Qm,n ;Q). 
Interpreted as a p-linear map from Qm,n to Q it is Qo-linear with respect to p - 1 
variables. Since DPf(xo) is symmetric, it follows that it is automatically Qo-linear 
in all of its p variables. 0 

Defmition 5.2. Let fEQ(U) and XE U Qin,n. We already know that DPf(x)E 
U(Qm,n ;Q) and therefore (Proposition 3.2) there exists a unique family UA1 ... A)X) 
of elements of Q such that 

DPf(x)(t. ..... t) tAp ... t. Al1J . . (y) 
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for all ti = (t/)eQm,no = 1,2, ... ,p). We define then 

oPf(x) 
OXA1"'OXAp . UA1 ... Ap(X). 

Proposition 5.2. IffeQ(U) then the functions 

are also in Q(U), and 

Moreover 

O f 
oPf(x) 

• X 1-+ --;--..,.
Al ... Ap· OXA1"'OXAp 

A. Jadczyk and K. Pilch 

( - 1)I
A

kII
A

k+ 110 Al.:.Ak+ lAk ... Apf 

Proof With Ai' ... ,Ap fixed, the map g ~ gAl ... Ap from IJ(Qm,n ;Q) to Q defined 
in Proposition 3.2 is Qo-linear and continuous. Therefore the function 0 Al ... Apf 
is also supersmooth. Then the statement· follows by a standard application of 
the theorem on differentiability of compositions of differentiable mappings of 
Banach spaces. The last formula is a direct consequence of commutativity of 
partial derivatives. D 

We note at this place a lemma which will be useful in the next section. 

Lemma 5.1. Let U c: Qm,n be an open bali,and let xoe U. For every function 
feQ(U) there exist functions gAeQ(U)(A 1, ... , m + n) such that 

a) f(x) = f(xo) + (xA xg)gA(X) 

b) gixo) = (8 Af)(xo) 

Proof Define 

1 

gA(X) = J (0 Af)(xo + t(x xo) )dt, 
o 

and apply the Taylor's Theorem [3]. 0 
Suppose now f is a supersmooth function from Qm,n to Qm' ,n', i.e. all the compo:

nentsfA : Qm,n ~QIA'I are supersmooth. Then 

fAB'(X) ~ 0 AfB'(x) 

is a matrix with entriesfAB'(x)eQIAI+IB'I.1f g:Qm"n' ~ Qm",n" is also supersmooth 
then . 

( Of) C" =f B' C" g A A gB' . 

In particular, when m' = m, n' = nand f - 1 exists and is supersmooth, then 

fA B'(f-1)B'C = b~. 

Proposition 5.3. (Inverse function theorem) Let V c: Qm,n be an open set, and 
let feQ(V, Qm,n). Suppose the matrix O'(fAB(XO)) is invertible for some xoeV. 

• 
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Then there exists an open neighbourhood U c: V of Xo such that the restriction 
of f to U is a homeomorphism of U onto an open neighbourhood of Yo = f(xo)' 
Furthermore the inverse mapping g of feU) onto U is also supersmooth. 

Proof By Corollary 3.1 the map (Df)(xo) is invertible and therefore the standard 
inverse function Theorem [3] implies that (Df)(x) is invertible for xe U, that 
geCOO(f(U);U) exists, and (Df(x)) o (Dg(f(x))) = idu(x). Then (Dg)(y), being 
the inverse of a Qo-linear map Df(x), is also Qo-linear, and therefore g is also 
supersmooth. 

The rest of this section deals with the problem of natural domains of definition 
of supersmooth functions and the following results, although important for 
clarifying the structure of the sheaf U ~ Q(U ;Qm"n') of supersmooth maps, will 
not be usedin Sects. 6 and 7. 

Defmition 5.3. For each subset W c: Qm,n let W- denotes the set O'-l(O"(W)) i.e. 

m 

W-~ IT {O"-l(O"(prA(W))} x (Ql)n. 
A=l 

A set W c: Qm,n is called O"-convex (resp. O"-connected) if for each ae W the set 
{a} - n W is convex (resp. connected). 

Proposition 5.4. Let U c: Qm,n be open, O"-connected, and let feQ(U ;Qm',n'). 
Then 

(0 if a, a' e U and O"(a) = O"(a'), then O"(f(a)) = O"(f(a')) 

(ii) fadmits a unique extensionf- eQ(U- ;Qm',n,) 

(iii) O"(f-(U-)) O'(f(U)). 

To prove that above Proposition we shall first establish two Lemmas. 

Lemma 5.2. Let U c: Qm,n be an open set. Then for each ae U- there exists CE U 
such that hA ~aA - cA are nilpotentsfor A 1, ... , m + n. 

Proof If ae u- then there exists be U such that O"(aA) O"(bA)(A = 1, ... , m + n) . 
Let b > 0 be such that the open ball centered at b and with radius b is contained 
in U. Since aA 

- bA e Q~ for A = 1, ... ,m, it follows that there exist nilpotents 
hAeQo such that II aA bA - hA II < b/m. Let cA = aA hA for A 1, ... ,m, and 
cA bA for A = m + 1, ... ,m + n. Since II c - b II < b it follows that ceU. 0 

-
Lemma 5.3. Let U c: Qm,n be open O"-convex, and letfeQ(U; Qm',n'). Thenf admits 
a unique extension f- eQ(U- ;Qm',n} If Vc: U is also open and O"-convex, then 
(fl Vr I V- . Moreover O"(f- (U-)) = O"(f(U)). 

Proof Take any ae U- and let hA(A = 1, ... ,m + n) be nilpotents such that 
c~a heU. Let 

h-(a) ~ 2)1/p !)hAl ... hAp(O Ap ... A1f)(a - h), 
P 

the series being finite since hA are nilpotents. It is easy to see (compare proof 
ofthe Proposition 2.1Lc in [1J) thath-(a) is independent of a choice of nil po tents 
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hA as long as a - hE U. Therefore, with h fixed, the above formula defines f - ( . ) 
in a neighbourhood of a. It follows that f - is supersmooth. Any other super
smooth extension of f coincides · with f - owing to the Taylor formula and (J
convexivity of U. From the uniqueness of the above extension it easy follows 
that the extension and restriction maps commute. Finally if aE U then f-(a) = 
h-(a) and therefore (J(f-(a)) = (J(h-(a)) = (J(f(a - h))E(J(f(U)). D 

Proof of the Proposition 5.4. For each aE U let U(a) cUbe an open ball centered 
at a, and let, for each bEU-, V(b) ~ {aEU:beU(a)-}. With bEU- fixed we shall 
first show that the map a ~ (fl U(a))-(b) is constant on V(b). Indeed, suppose 
a, a' E V(b) i.e. there exist CE U(a), c' E U(a') such that (J(c) = (J(c') = (J(b). Then, 
since CE U(a) n U(c), it follows that bE(U(a) n U(c))-. But (Lemma 5.3.) 
(fIU(a))-I(U(a)nU(c))- =(fIU(a)nU(c))- ~(fIU(c))-I(U(a)n U(c))-, andso 
(f I U(a))-(b) = (fl U(c))-(b). Similarly (f I U(a'))-(b) = (fl U(c'))-(b). We have 
therefore to show that (f I U( c)) - (b) = (f I U( c')) - (b). The set b - n U is connected 
and {b- n U(a) :aE V(b)} is its open covering. Therefore there exist c I ' ~ .. , CkE V(b) 
such that c i =c;ck=c'and U(cJn U(Ci +l ) + 0· But then (fIU(cl))-(b)= 
((f I U(cl))-I U(c l ) n U(c2))-)(b) = (fl U(c2))-(b) = ... = (fl U(ck))-(b). In this way 
we have defined f-(b) as (f I U(a))"-(b) for some aE V(b). It is evident that f
so defined is supersmooth · since (f I U(a))-· defines not only f-(b) but also f-(b') 
for all b' E U(a)-. Let now g be some other supersmooth extension of f. Then 
g(b) == (g I U(a))-(b) = (II U(a))-(b) == f-(b), and therefore f- is unique. We also 
have .(J(f-(b))=(J(fIU(a))-(b)c(J(f(U(a))) by Lemma 5.3. Itremains to show 
that for a, a'E U such that (J(a) = (J(a') we have (J(f(a)) = (J(f(a'))· Observe that 
the segment {ta + (1 - ta':O ~t ~ 1} is contained inU-. Then by Lemma 5.L, 

f(a') = f-(a') = f-(a)+ (a' - a)AgA(a') = f(a) + (a' - a)AgA(a), 

and therefore (J(f(a')) = (J(f(a)). . D 
It follows from the above result that a natural domain of definition for a 

supersmooth functionf: Qm,n -+ Q is a set of the form (J-I(U), where U is open in 
IRm. Iffis defined on such a set, then by the Taylor's Theorem there exist uniquely 
defined supersmooth functions to (x) such that IX1,"'IXp 

. n 1 . 
f(x /\ 8IX) = .2: -pI 8IX1 ... 8IXPfIXP, ... ,IX1(XIl), 

p=o . 

with h 1, ••• IX i, IXi+ 1,''''IXp = - h1, ... ,IXi+ 1,IXi, ... ,IX
p

' Therefore a dependenc~ of f on its odd 
arguments is rather trivial. It is more difficult to investigate analYticity properties 
with respect to the even arguments. Suppose f: Qm,O -+ Q is supersmooth, defined 
on(J-I(U) c Qm,O, U c IRm, and letJdenotes the restriction off to U c IRm c Qm,O. 
It is easy to see that (0 Ill ... llpf) ~ = ° Ill ... IlP], where the derivatives on the right-hand 
side are with respect to m real variables. In particular J E COO( U). It is also easy 
to prove that the map fH Jfrom Q((J-l(U) ;Q) to COO(U ;Q) is injective. Namely, 
if J= 0, then (Olll, ... ,llpf( = 0lll, ... ,llpJ= O. Let all(f,l = 1, ... ,m) be nilpotents and 
let AE U. Then A + taE(J-l(U) and by the Taylor's Theorem 

f(A + a) = J(A) + alloIlJ(A) + ... + (liN !)aIl1 ... alli>(oll ... Il J)(A) = O. 
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Therefore fvanishes on a dense subset of (J-l(A). It follows that /= 0 on (J-l(U). 
One can show that the map f -+ Jis not a surjection onto COO(U ;Q). On the other 
hand an analytic function can be always extended from an open ball U C .lRm 

to (J-l(U) c QIn,o. A precise characterization of the range of the map f H-J is 
however not known. 

6. Supermanifolds 

Our definition of a supermanifold (apart of the fact that we allow Q to be an 
arbitrary BG-algebra) is equivalent to that given in [1 ]'What differs the two 
approaches is a treatment of tangent bundles. We define tangent space in quite 
a conventional way and then apply the extension procedure developed in Sect. 4. 
The reader is assumed here to be familiar with elements of the theory of Banach 
manifolds, the recommended reference being [4]. . 

Defmition 6.1. A supermanifold is a Banach manifoldM modelled on Qm,n, 
and with a supersmooth atlas <P of local coordinate maps ¢. For each open set 
U c M we denote by Q(U) the graded algebra of supersmooth functions on U. 

Given a point pEM; let c, c'be twoC I maps from an open neighbourhood of 
OE IR to M, such that c(O) = c'(O) = p. We call c and c' equivalent iffor each (equiva
lently, for some) coordinate system ¢ around p, the functions ¢oc and ¢oc' have 
the same derivative at OE IR. The equivalence classes for this relation are called 
tangent vectors at p, and the set of all tangent vectors at p is denoted by T(M ;p). 
Each coordinate system ¢ defined around p defines the bijection ¢: T(M;p)~ Qm,n 
which sends every tangent vector v = [I] from T(M ;p) into the element (VA) ~ 
(dldt)(¢ of) It=o of Qm,n. When ¢ = (xA) is replaced by ¢' = (xA') then 

.(6.1) 

It follows that T(M;p) is an (m, n)-dimensional vector superspace, so that one 
can apply the results of Sect. 4 and construct the odd complement r(M ;p) of 
T(M;p), and the graded Banach left Q-module T(M;p) = T(M;p)EBT(M;p). 
By the standard methods of differential geometry we construct then the vector 
bundles T(M), T(M) and T(M), which are supermanifolds with supersmooth 
projections onto M. A graded vector superfield X is defined as a supersmooth 
section of the bundle T(M). Each graded vector superfield is then the sum X = 
X ° + X 1 of its even and odd part which are supersmooth sections of the bundles 
T(M) and T(M) respectively. An obviously equivalent definition of a graded 
tangent vector is the following one: a graded tangent vector VE T(M ;p) is a geo
metrical~object v defined in each coordinate system ¢ = (xA

) around p by its 
components (VA)EQm+n which transform according to the formula (6.1). Then 
v is even (resp. odd) if (VA)EQm,n (resp. Qfit,"). What is not obvious is that a graded 
tangent vector can be also defined as a derivation of the graded algebra of germs 
of supersmooth functions at p. We shall proceed now to prove this important 
fact. 

Given pE M let Q (M) be the graded algebra of germs of supersmooth functions 
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at p. An even (resp. odd) derivation at p is an even (resp. odd) Qo-linear map 
v: Qp(M) -+ Q such that ' 

v(fg) = v(f)g(P) + J1VI(f(P))v(g) , (6.2) 

where I v I 0 (resp·1 v I = 1). The set D(M ;p) of all derivations at p is then a graded 
left Q-module. If VE D(M ;p) and if cp = (xA

) is a local coordinate system around 
p, then the components VA of v with respect to (xA) are defined by VA v(xA). The 
maps (8 A)p (8 Af)(P) satisfy the relations(6.2) so that (8 A)pED(M ;P)A' 

Proposition 6.1. For each local coordinate system cp = (xA
) around pEM the 

derivatives (8 A)p form up a left Q-module basis for D(M ;p). Namely, for every 
vED(M ;p) we have v = vA(8 A)p' 

Proof We first show that every derivation vED(M ;p) annihilates germs of cons
tant functions at p. Since 12 = 1, it is evident that v(l) = 0 and Qo-linearity of 
v implies that v annihilates Qo' Now for a, bEQl we have abEQo' and therefore 
0= v(ab) = v(a)b + Jlvl(a)v(b) v(a)b - v(b)a for all a, bEQl' On the other hand 
Qo-linearity of v implies (Proposition 3.1, vi)) v(a)b = v(b)a so that v(a)b = 0 and 
by Proposition 3.1., i) we get v(q) O. Now we make use of Lemma 5.1 and write 
in an open neighbourhood of Xo cp(P) 

(focp-l)ocp ~ f(P) + (xA - X~A)gGocp. 

By applying v to both sides we 

v(f) V(XA)gA(XO) = vA(8 Af)(P)· o 
Corollary 6.1. If (xA) ~nd (xA') are local coordinate systems around pEM, then 

VA' VA 8x
A

'(x(p)) 

for each vED(M;p). In particular the graded left Q-modules D(M;p) and T(M;p) 
are isomorphic. 

Proof. Apply the above Proposition to f= xA'. . . 
The Isomorphism of T(M ;p) and D(M;p) have, been shown'iby referring to 

coordinate maps. It is of some interest to see how a coordinate free description 
can be given. If VE T(M ;p) then v determines the even derivation v by 

v :f~~(fOC)1 r,\~ 
dt t=O' 

where c is a path through p to which v is tangent. Suppose now VE f(M ;p) is an 
odd tangent vector at p. Then, given aEQ!, we have aVET(M;p), and for each 
fEQ/M) there exists a unique element V(f)EQ such that (aiJ)(f) a6(f) for all 
aEQl' The map f~ v(f) so defined is then an odd derivation at p. Equivalently 
one may consider classes of equivalence of supersmooth maps c: 8~ c(a) from 
open neighbourhoods of OEQ1 to M, and define an odd tangent vector as such 
an equivalence class, so that for V= [c] we have VA = (dcA/da)e=O' Such a point 
of view is however of little use. The reason is that while an even vector superfield 
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generates one-parameter group of local, supersmooth, diffeomorphisms of M, 
an odd vector superfield can not be integrated even if one thinks about using an 
anticommuting parameter aEQl' The folk saying that one can integrate an odd 
vector field with a help of an anticommuting parameter is misleading, and what 
one usually does is an integration of an even vector field aY, aEQ1 being fixed. 
One may say that odd vectors point out in directions which are complementary 
to M, what is precisely the case if M is interpreted as the zero submanifold of 
the vector bundle T(M). 

Having defined tangent bundle, the rest of differential geometry of super
manifolds is straightforward to develop. An even differential form at p is an 
element of T(M ;p)t 0 and a graded differential form at p is an element of T(M ;p)t = 
LL(T(M;p);Q). Given a coordinate system cp = (xA) around p, the differential 
forms (dxA)p defined by (dxA)/v)';' VA, VE T(M;p), form up a right Q-module basis 
for T(M ;ptThe concepts of exterior derivative and exterior product can be 
defined, first for sections of T(M ;p)t 0 evaJuated on T(M ;p), then the extension 
procedure described in Sect. 4 can be applied at each point pEM. The same 
method applies to Lie derivatives, connections etc. 

7. Supersymmetric Superspaces 

Let (E, <P)(resp. (F, P)) be a vector superspace of dimension (4, O)(resp. (0, 4)) 
endowed with a complete family of coordinate maps cp :E-+ (QO)4 (resp. "':F-+ 
(Ql)4), where Q is a fixed BG-algebra over IR. Let g (resp. C) be an even symmetric 
Qo-bilinear form on E(:resp. on F). The form g(resp. C) considered as a map 
g : E :W 0 (resp. C: F -+ Ft 0) is assumed to be a bijection. The body of g (see 
Sect. 4) is assumed to have signature ( - 1, + 1, + 1, + 1). 

The two structures (E, g) and (F, C) are soldered by requiring that there is 
also given a map YEL(E ;L(F ;F)) such that 

(i) y(v)y(w) + y(w)y(v) = 2< v, wig> IF' v, 

(ii) Cy(v) = - y(v)tc for all VEE . 

The map vt ~ - Cy(g -l(vt)) from Et 0 to L(F ;Ft 0) can be also interpreted as an 
element QEL2(R;E) (see Proposition 4.1. (iii)), so that ' 

vt(Q(y, z)) = «Cy(g-l(vt)))(z))(y) 

for all y,zEF,vtEEto' The relation (ii) implies then that Qis skewsymmetric. 
Let S be an affine space over F. Each tangent space T(S;8 0) is canonically 

isomorphic to F and Q can be also interpreted as an E-valued 2-form on S. Let 
M be a supersmooth principal bundle over S with (E, + ) as the structure group 
and bundle projection ll: M -+ S . For each VEE let ~ denotes the translation 
~:M -+ M so that II 0 ~ = ll. The form Q is now,lifted to M by II and denoted 
with the same letter Q. It is horizontal (i.e. Q(X, Y) 0 if dll(X) 0) and closed 
(i.e. dQ = 0). Since the structure group is Abelian, Q can be considered as a curva
ture 2-form of principal connection OJ. 
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principal bundle tAtl, II, S, E) equipped with a principal connection w such that 
dro Q. A symmetry of M is a vector superfield X which preserves the structure 
of M, i.e. 

(a) X is invariant vector field, Le. 

(dn)(X(Tvp» = dn(X(p» 

for all peM and veE. Equivalently, X preserves the fibering of M, i.e. there exists 
vector superfield X' on S such that X ~ X'. 

(b) X generates isometries between the fibers of M, i.e. 

X( < Y, Zig) ) = <!l' x Y, Zig) + < Y, !l' xZ I g) 

for all vertical vector superfields Y, Z : M -7 T(M), where' g is the induced metric 
on vertical subspaces. 

(c) X transforms horizontal subspaces into horizontal ones, i.e. 

< !l' x Y I w ) = 0 if < Y I ro ) = O. , 

(d) X' is an isometry of S endowed with the induced metric C. 
'To describe explicitly all symmetries (which have been defined without any 

reference to coordinate systems) one has to decide which coordinate systems are 
the convenient ones. A strategy of adapting a coordinate system 'can be described 
as foHows. 
L Chos~ a preferred set of real y-matrices I' /" p satisfying [y tL , I' J + 21] ~v with 
(1]tL) = dIag( - 1, + 1, + 1, + 1), (or use iYtL if ytL'are chosen imaginary), and choose 
a real skew-symmetric matrix (CaP) (charge conjugation matrix) so that the matrix, 
eq uation Cy tL C- 1 - YtL T holds. A straightforward argument shows that there 
exist Qo-module bases etLEE,eaeF such that <etL,evlg) 1]tLV' <ea,epIC) = Cap 
and y(e)ea =epy/a.Theform QeL2(F;E) can then be written as Q(ea, ep)tL = - Y:P' 
where ,,)tL = C n tLV,,) (j , , (ap a(j'/ I v p' , 
2. Choose OoeS so that S can be identified with F, and for every OeS one has 
o 00 + oaea with oaEQ1' 
3. Having already chosen coordinate systems on the structure group E and on 
the base manifold'S, there remains to chose a supersmooth section of M. The 
explicit form of the connection i-form ro will depend on this choice. A convenient 
choice of such a section is the one in which ro can be written as 

rotL = ,dxtL + 1.dOa,,)tL oP 
2 lap' 

and it is easy to see that such a choice is always possible. 
Now in an adapted coordinate system the most' general symmetry X can be 

calculated. The result reads 

X=btL8 +aa(8 +1.y tLOP8 )+1.btLV(x 8 -x 8 -L a e(8) tL a 2 ap tL 2 tL v v tL tLv P a' 

where btl, btLV - bVtL are from Qo' aaeQ1' and L tLV ±[ytL,yJ· 
There is a straightforward generalization of the above construction which 

leads to an extended supersymmetry. The vector superspace F is to be replaced by 
F(N) jRN ® F, and C is replaced by C(N) = I ® C so that C(N) : jRN ® F -7 ® Ft 

N' • •. ., (N) tL 
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(oai)(jl = 1, ... ,4;i = 1, ... ,N), and in an adapted coordinate system curvature 
and connection forms read 

Q(N) = _1.dOai /\ dOPib .. ,,)tL 8 
2' l)l a/J tL' 

w(N) dxtL + 1.dOai,,)tL b . .8Pi 
2 lap l)' 

The most general symmetry X takes the form 

X btL8 + aai(8 . + 1.,,)tL b .. OPi8) tL al 2 lap l) tL 
+ 1.bii(Oakb'.8. - Odb .8 .) 

2 kl a) k) al 
+ 1. btLV(x 8 - x 8 L a OPi 8 .) 

2 tL v v tL tLv P al ' 

with aaie Q1 and btl, btLv , = - bvtL, biJ= - bii from Qo' 
In both' cases (Le. of simple and extended supersymmetry) a real manifold 

M can be defined as the body of M. In both cases M is just an ordinary Minkowski 
space. In the last example given below the ,quotient manifold will have a structure 
of a principal bundle Minkowski space with 0(2) as its structure group. 

To describe superspace w.ith central charge (see [5J,and references there) 
let jR2 be endowed with its canonical metric b . (b .. ), i,j' = 1,2, and let T denote , u 
the canonical representation of 0(2) on jR2. We define Fe= jR2 ® F and equip 
it with the metric Ce = b® C as in the last example. Se is an affine space over 
Fe' Now the supergroup 0'(2) has to be defined. We define 0'(2) as 0(2) x Q~' with 
the group multiplication (q, a)(q', d) ~ (qq', a + d) for q, q' E0(2), a, a' EQ~. 

Let for each <P E jR, T( <p) denotes the matrix 

T(t/» ( 
. C?s <p, Sin. <P). 

- sin <p, cos <p 
,. ' 

, Then, givenq>E IR, we have a coordinate map with domain 0(2)\ T(q» 'and range 
(0,211:) c IR! given by T(<p + q»f-+ <p. We define the local coordinate map x5 for 
0/(2) with domain (0(2)\T(q>)) x Q~ and range 0'-1«0,211:» c Qo by x 5 

: (T(<P), a) 1-+ 

<p + a. 
It is evident that with the above definition 0'(2) is a superanalytic super-group 

according to [6J, with its Lie algebra, isomorphic to Qo" The representation T 
of 0(2) on 1R!2 extends by analyticity to a -representation of 0/(2) on Fe' 

Let now E 5 = 0/(2) x E so that E 5 is also a supergroup with its Lie algebra 
85 isomorphic to Qo EB E. On Qo EB E we have the invariant metric g5 = 1 EB g. 
M S is defined to be a prinCipal fibre bundle overSe with £5 as its structure group. 

On Fe we have now representation r = T ® I' of E 5 and the derived repre
sentation dr = dT® iF + 1[R12 ®y of 8 5. The form, Q is defined as in the first 
example but with C, 1', g replaced by Ce ' dr, gS. In an adapted coordinate system 
we then have 

Q = ~dlJ"; A dlJlli(Y:i"i a~" + C"P'iiiJ~5 ). 

wtL = dxtL'+1.doai,,)1l OPib .. 
2 lap l)' 



390 A. JadcZYkaI1ClX.'Pllch 

Looking Jor the symmetries of M 5 which preserve all the' relevant stru~ture, 
(including the direct sum structure of vertical subspaces) we can find the following 
generators: 

o ! JL 5: OPj~! Opj 0 + 2 Yu;puij , oxJL + 2 Cu;p8ij 

The interesting commutation relations are 

[Qd,'Qpj] + Y:poijPJL + Cu;{J8ijZ, 

[Qu;i' B] ,= ° ije-'''Qu;k' 

Remark 7.1. IfQo-mo~ulebases eJLEE,erijEF
C 

are chosen, then·,theglobalvielbein 
on'M5 is defmed by the horizontal ,lift of eu;i -8, so 'thatM5 is endowed with a 
teleparallelism. The affine connection coefficients can be -easily calculated, the 

, only non-vanishing being rJLU;i,pj (lj2)y JLapo,ij' r~,pj = (1/2)Cu;p8 i j" 

Remark 7.2. Since in all three examples the supersymmetric sup~:rspapes 'afe 
principal bundles endowed with principal connections, we have,cov~iiaL9t deri
vatives D u;i which can act on' differential~orms on the bundle to producehorjzontal 
OReS (see e.g. [7], Chap., VI., Sect. 4). IIi particular, when applied to functlop,son 
lvi, they coincide with the "covariant derivatives" exploited by SalaIIi';:tndStra,thgee 
[8]. , , , " 
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