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We describe ab initio the algebraic features of “fermionic differential calculus”—the graded
commutative generalization of the algebraic theory of exterior (covariant) derivatives, Lie-
derivatives, and interior products. Our study is centered around the (module) derivation
properties of those operators. © 1987 Academic Press, Inc.

1. INTRODUCTION

This paper is a (self-contained ) sequel to our paper [2] (quoted below as [1]), in
which the Lie—Cartan pairs of [1], describing the algebraic features of the classical
operators of differential geometry, are generalized to the graded commutatlve frame
(case of “anticommuting variables™).

We here present a variant of the formalism in [I] which is both mathematically
more systematic (with the algebra of differential forms graded commutative and all
‘classical operators graded derivations for the total grading) and physically more
relevant (as the algebraic extraction of the “fermionic differential calculus” having
Berezin’s integration as its integral calculus counterpart).

Apart from a shift in content, the present paper offers a technique of proof
independent of [I]—hence yielding a self-contained exposition. We mention in
addition the proofs obtained by adapting the results of [I], thus providing a
welcome double check of the involved 31gn factors appearing in the formulae of
both papers.

As will become apparent, both the classical identities relatmg exterior (covariant)
derivatives, Lie derivatives and interior products (cf. Theorem [3.2](iii)), and the
(module) derivation properties (cf. Theorems [4.1] and [5.3]), are identical with
the corresponding features of usual differential geometry if written in terms of
graded commutators, and if use is made of the total grading (sum of the order of
the form and the intrinsic grading, the latter trivial in usual differential geometry).
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Thus graded commutative algebras appear as the natural setting for phrasing the
algorithmic aspects of differential geometry. From a spatial point of view, the
graded-commutative generalization corresponds to the passage from usual differen-
tial manifolds to supermanifolds (cf. [3]). But the point of our study is to isolate
algebraic aspects, dispensing with spatial constructions. In this respect we note that,
while “spaces” and “commutative algebras” are categorically equivalent
(specifically: locally compact spaces and abelian C*-algebras, via the Gelfand struc-
ture theory of the latter), we do not have an analogous general “spatial implemen-
tation” of graded commutative algebras by means of super-manifolds (the reader
may consult [4] for a discussion of related problems, and [5, 6] for indications of
directions for further work).

We conclude this introduction with a description of the differences between the
present formalism and that of [I]. The axioms of graded Lie-Cartan pairs remain
the same as in [I], as well as the definition of the E-connections relative to a

“graded 4-module E, for a given Lie-Cartan pair (L, 4). The differences appear at
the level of specifying the “classical operators” &,, dy, p A, 0,(£), 84(¢), p(&), i(&),
. :£eL, and the spaces on which they act. The mod1ﬁcat10ns are as follows:

- (i) The sets A*(L,A) (resp. AX(L,A)) of graded alternate A-valued
C-multilinear (resp. A-multilinear) forms on L are unchanged, but the wedge
product a A $ is modified by addition of a sign

( 1 )intrinsic grade of a - N-grade of ﬁ (1 1 )
'ThlS has the effect of makzng N*(L, A) and NX(L, A) graded commutative algebras

w.r.t. the total grading.
- The definition formulae for 6, and pA are unchanged But those of 6,(¢)a,

- g Go(é) a, p(f) a, and (&) o are modlﬁed by addition of a sign

( 1)( : l)gradcofé Ngradeofa ) 4 : (12)

This has the effect of making the classical operators graded derivations uniformly
w.r.t. the total grading (with 6 and p/\ of grade 1, 0,(%), 60(5) and p(¢) of grade
0&, and i(¢) of grade 9¢+ 1).

(ii). For FE a graded A-module, and p an E—connectlon (resp. a local E-con-
nection), the corresponding classical operators act on the (unchanged) space

E®c N\* (L, 4) (13)

(resp.
E®4 N} (L, 4)), (1.4)

now a right A* (L, 4)-module (resp. A%-module) for the new product structure of
_ these algebras (cf. (1.1)).
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Moreover, the identification of the elements X ® « of the above tensor products
(1.3) (resp. (1.4)) with elements of A* (L, E) (resp. A% (L, E)) is modified by inter-
position of a sign

(_l)gradeofX-N—gradeofa_ ' (15)

The definition formula of 6,4 then remains unchanged, while those of 6,(¢) and
i(¢) are modified by addmg a sign

(— l)grade of {-N-grade of & ‘ (1.6)

This has the effect of making all classical operators graded derivations of the module
(1, 3) (resp. (1.4)) w.r.t. to the total gradzng, namely J, a d-derivation of grade 1,
0,(¢) a 0(&)-derivation of grade d&, and i(¢) an i(¢)- denvatlon of grade 1+ 9¢.
Our exposition proceeds as follows: after ‘defining graded Lie—Cartan pairs and
their E-connections in Section 2, the classical operators attached to a given E-con-
nection are defined in Section ‘3 which states in Theorem [3.2]: (i) their property of
preserving graded alternation; (ii) their “locality properties” for a local connection
p; (iii) the classical identities which they fulfill—the latter being checked in low
order (on zero- and one-forms). In Section 4 we study the particular case E= A4,
show that the sets A* (L, 4) (resp. A% (L, 4)) of graded alternate (resp. “local”
graded alternate) forms are graded commutative bigraded differential algebras; and
prove that the classical operators are graded derivations of those algebras
(Theorem [4.1]—we give two ‘ab initio proofs of the last fact). Section 5 returns to
the general E-valued case, expresses the A* (L, E)-valued classical operators in
terms of the A* (L, A)-valued ones (Lemma [5.2]), reduces the module-derivation
properties of the first to the derivation properties of the latter (Theorem [5.37]) and
uses these for proving the identities between classical operators. All these results are
independently checked by adapting the results of [1] to the present modified frame.

2. GRADED LiE—CARTAN PAIRS: E-CONNECTIONS

[2.1] DEerNITION. A pair (L A) of a Lie superalgebra L, and a graded com-
mutative algebra (both complex’, the latter with unit 1) is a graded Lie—Cartan pair
whenever

(i) we have a (grade zero) homomorphism?
EeL—d&)={acd—EtacAd} ' (2.1)
! In what follows the word “complex” could be replaced throughout by “real.”

2 In order to alleviate notation, and so as to generalize the usual notation in differential geometry, we
write £a instead of d(¢) a.
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of the Lie superalgebra L into the Lie superalgebra Der 4 of derivations® of 4;
(i) L is a graded left 4-module, unital in the sense 1 =¢, e L;
(iii) we have the properties

a(Eb)=(at)b, a, bed, telL (2.3)

and

[&an]=(—1)*%a[& 9]+ (éa)n, EteL nel,acd (2.4)

where [ ] denotes a graded commutator and we denote by E the set of
homogeneous elements of the graded vector space E=E°@® E'(E = E° U E'), with
Ox the grade of xe E".

Given a graded unital 4-module E (which we want to consider here as a right
A-module*) an E-connection p is a zero grade C-linear assignment of a C-linear
operator p(¢) in E to each &€ L, fulfilling the property

p)(Xa)={p(&) X} a+(~1)**X(a), (eL XeE acd.  (25)
The corresponding curvature 2, is defined by

where [, ] denotes graded commutators®. The E-connection p is called local
whenever it fulfills

p(ag) X=ap(&)X, CeL, aed, ; 2.7)

and flat whenever Q,=0 (ie., whenever p is a representation of the Lie
superalgebra L).

[2.2] We recall that

(i) the assumptions, made in [2.1], of the existence of a unit 1 in 4 is not a
restriction in generality (cf. [I, [1.8]). One can drop this assumption, considering
linear representation spaces E of 4 instead of A-modules.

(i) each graded Lie-Cartan pair (L, 4) is accompanied by its depletion, the
degenerate® Lie—Cartan pair obtained by keeping all the products a¢, and replacing

3 Derivations in the graded commutative sense, ie., sums of even derivations and odd anti-
derivations, with the graded commutator as the bracket. We recall that one has &1 =0 for all ¢ e Der 4.

4 We recall that the notions of (graded unital) right 4-module and left 4-module coincide for a
graded commutative algebra A (via the convention aX =(—1)%% X4 XeE ae A which makes E a
bimodule).

5 This will be the case throughout this paper.

¢ The Lie-Cartan pair (L, 4) is degenerate whenever a=0 for all e L and ae A.
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all the products ¢a by zero, (€ L, ae A (cf. [1, [1.4], [1.5], [1.6]). While the sct-of
E-connections for a fixed E is generally an affine space, this space becomes linear
(goes through the zero) for a degenerate Lie—Cartan pair.

(iii) ,(&, n)is a homomorphism of the 4-module E (of grade ¢ + oy for &,
neE cf [1,[1.2]]).

(iv) the map din (2.1) is a local and flat A-connection.

[2.3] There are two distinguished A-modules, namely 4 and L. There exists a
canonical, local, and flat A-connection p(£)=d({) which will be discussed in
Section 4. _ '

The second of the two distinguished modules, the 4-module L, also has a
canonical flat connection: ad(£)=[¢£,-]. This connection is however nonlccal
(unless (L, A) is degenerate). In general there exists no canonical local L-connec-
tion. For a generic L-connection V the torsion Ty of V is defined by

To(&,m)=Ven —(=1)*"V,E—[&n],  nleL.

The map LxL> (& n)— Ty(é, n)eL is C-bilinear graded antisymmetric. If V' is
local then this map is also graded A4-bilinear.

3. THE CLASSICAL OPERATORS ATTACHED TO AN E-CONNECTION

[3.1] DermutiOoNs. Let (L, A) be a graded Lie—Cartan pair, with E a graded
unital A-module, and p an E-connection. And denote’ by #"(L, E) (resp.
& (L, E)) the set of E-valued n— C-linear (resp. n— A4-linear) forms on A. The
classical operators 6,, pA, 6¢; 0,(8), 00(8), p(&); &), Q& m), Q,n; E,nel
attached to the FE-commection p are defined as follows on the space
PHL E)=@ .y L(L, E): for Ae L*(L, E) of intrinsic grade 0,4, n>1, and
63 n, éla hais] €n+2€L' we set

5P=50+p/\ . ) (3‘1)
with®

(50)")(51, ey €n+ 1) = Z (_ l)aij A’([Cn éj]’ 619 Rat] Ei: R Ej’ ] én+1)>

I<i<jgsn+1

‘ = & 32
where =i+ j+ (08, +08) Y. 06, +0¢, Y 8, (32)
k=1

k=i+1 .

60=0 on ¥°L,E)=E

7 By definition £°(L, E)=E. See Appendix 4 for definitions.
8 The caret ~ means omission of the corresponding argument.
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and

n+1

(p A l)(&l, () §n+1)= Z (—l)ﬂi p(éz) /'L(gla ey Eis ooy €n+1),
=t L (3.3)
where f,=1+i+0¢; (60,1+ Y a¢k>,
k=1
further

0,(8)=0o(8) + p(£) (34)

with

n

{00(5) l}(él’ L] én)z (_1)n6§+1 Z (—1)7‘-1(51, *eey éi—ls [é) éi]a éi+ls seey é:n)s

i=1

where 7, = 8¢ (_aoz Ly 5€k> (3.5)

k=1

00()=0 on %L, E)=E

and’®
PO &)= (1% pO{ME - E) (36)
finally
| {HE) 1} Ers o G )= (— 1) BVEAE &8, ) (3.7)
i(¢)=0 on ¥%L,E)=E
(2,8 M) A} s )= (= 1"+ Q& m){AE1s s E1)) (38

(@ A DGrs Eur)=— X (1)

1<i<jg<n+4+2

X Q& E) ME s o Eiy s &y v En ) (3.9)

The following theorem states the main properties of these classical operators—
apart from their module derivation properties discussed below in Section 5, whose
description relies on the algebra A* (L, A) described in Section 4.

[3.2] THEOREM. With (L, A), E, p, b,, 8o, p A, 0,(&), 85(&), p(&); iE); 2,(&, 1),
and Q, A as in [3.1] we have that

® Note that p(¢), resp. Q,(&, 1), as defined in (3.6), resp. (3.8), extend p(¢) and ,(¢&, ) originally
defined on E= %L, E). v
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(i) These operators leave invariant the set \* (L, E) of E-valued graded alter-
nate multilinear forms on L. Specifically, with \" (L, E), the set of such n-forms of
intrinsic grade®® k, Ae \" (L, E) of intrinsic grade 0,4, and &, ne L’ of respective
grades 0&, Oy, we have that

Soh p A Ay 8,4 N (L, E)pa

0o(&) 4 p(E) A 0,(E) A€ N (L, E)aor s ¢

i(&) A \"" (L E)ays oz (3.10)

n+2

Qp A E/\ (Ls E)aol

Q& mAe \" (L E)agasoc+on-

(i) AX(L,E)=@®,.n A% (L, E) is stable under i(£) and Q (¢, n); and, if the
connection p is local, under 6,, 0,(¢), €L, and 2, A.

(ili) We have the following relations, where [ ,] stands for graded com-
mutators w.r.t. the total grading 0 =0,+n, and &, ne L: '

L&), i(n)1=0 (3.11)
[0,(8), 0,(n)]1=0,(L& n1)+£2,(& 1) (3.12)
2=0,r (3.13)
[6,,i()1=10,(¢) , (3.14)
[i(&), 0,(m)T1=iL& 1) (3.15)
[6,,0,(6)1+ [i(£), 2,A1=0 \ (3.16)
[00(2), Bo(1)] = 0o([&, 1) (3.12a)
83=0 (3.13a)

[0, i(£)]1=064(S) (3.14a)
Li(€), Bo(n)1=i([&, 7]) (3.152)
[00(¢), 861=0. (3.16a)

10 Gee Appendix A, definition (A, 17). The total grade of AeA"(L, E), is, by definition,
8\ =080 +n=k+n We shall denote A" (L, E)™ the set of graded alternate n-forms of total grade m.
Thus A" (L, E), = A" (L, Ey"*¥, AL, EY"= A" (L, E)pmyn» k, n+k, m, n+me Z/2. Note that 8o, p A
and &, are of total grade 1; 04(£), p(&), 6,(¢) of total grade 0¢; and i(€) of total grade 1+ 0¢, e L.
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We have, consequently,

[8o(&), p(1)]=0 (3.17)

[p(&), p(m)T1—p([E, n])=Q,(& ) (3.18)
[0, (0A)1+(pA ) =02, (3.19)
[(pA),i(E)]1=0 (3.20)

Li(€), p(1)1=0. (3:21)

Proof. For (i) and (ii) we refer to [1, 2.27]*.

(iii) A first proof is obtained by adapting the results in [I, 2.3] to the change
of definition (1.6) above. A second proof arises from the fact that both sides of each
of the above relations (3.4) through (3.21) have the same nature as module
derivations (cf. [5.3] below)—while they agree in low grade:

[3.3] Lemma. Relations (3.4) through (3.15) hold in restriction to \° (L, E)
and \' {L, E). '

This lemma is checked using the definition formulae in [3.1] whose low gradé
restrictions we list below:

[3.4] We have the following formulae for the classical operators in low grade:
for o€ A° (L, E)™, A, e A* (L, EY*M, A,e AX(L, E)°*, and &, 1, &,, &,, &€l
(6040)(£:)=0 A
(00411, &3) = —A:([1, &21) v
(6042)(&15 €2, &3) = — Ap([ &1, €51, &3) + (= 1)%2%% 45([€4, &3], &,)
— (= 1)2008T 9 2,([&5, &1, &)
(p A Ao)(&y) = (—1)%1%% p(&,) Ao
(p A A&y, &5) = (=1)%1%% p(&;) (&) — (= 1)7HXH+2D p(&,) 2,(¢,)
(P A 23)(815 &y &3) = (= 1)71 2% p(£)) 25(&5, &5) (3.23)
— (= 1)7(@R* %D p(g,) A5(&4, &)
+ (= 1)780RF D p(£) Ay(Ey, Es)
00(&) 4,=0
{0(8) 21 }(&) = — (= 1)+ 22 3 ([, &,]) (3.24)
{00(8) A23(&1, &) = — (= 1) 2% {Ay([&, &,1, &2) + (= 1) %% Ay(¢4, [, £,])

(3.22)

! However, see remark at the end of Section 2 for an independent proof of (i).
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p(é) 1029(5) Ao ‘ : .
{p(&) A HE) = (—1)% p(&) 4,(}) (3.25)

{p(&) A2 }{&1, &)= p(&) Ay(&4, &5)
i({) =0 , ,
i(E) Ay = (— 1) +a0m) ) (&) (3.26)
{i(8) A2}(&1) = (—1)% 2% 4,(E, &)
Q,(& 1) Ao=2,(£, 1) 4 ' (3.27)

{Q,(8,1) A }(E) = (—1)%+ 1 Q (¢, 1) A,(E))
(R, A Ao)(Er, &) = (—1)R0a+3 @ (£, &) A,
(R, A W) s, E3) = (= 1)0HCO+AD @ (£ &)
L (—1)PRdEERNCa LI O (¢ £ 1(E,)
+(—1)@aroCarat) g (£, ) A(E,). (3.28)

Proof of Lemma [3.3]. Straightforward verifications are immediate for
NA°® (L, E). As for A\' (L, E): (3.11) is immediate; (3.12) follows from (3.12a) (which
boils down to the graded Jacobi identity), (3.17), and (3.18); (3.13) follows-from
(3.13a) (again boiling down to the Jacobi identity) and (3.19) (straightforward——6
terms cancelling in the calculation of [J4, pA ]4:); (3.14) follows from (3.14a)
(immediate) and (3.20); (3.15) follows from (3.15a) and (3.21) (immediate).

[3.4] Remark. The operator p(¢) defined in (3.6) is not a connection in the
NA* (L, A)-module A* (L, E). This can be cured by extending the definition (3.1):
given a pair of connections (V, p), with V an L-connection and p an E-connection,
one defines the operators 8V and py, by

(09(8) 1} (&1 o ) = H(—1)P38+1 3 (=1
i=1

i=

X {/‘{(éls eeey éi—la [£> 51] + TV(&, 61‘)3 6i+17 ovey én)}a
éla ey anL, §EL

po(&) = 6%(2) + p(2). (329)

Then py is an A* (L, E)-connection which is local if p and V are local. In the par-
ticular case of V=ad we obtain 6¥ =0, and py =0, (cf. [2.3]).

4. THE GRADED COMMUTATIVE DIFFERENTIAL ALGEBRA A* (L, A4)

We now Study the basic 4-module, namely A itself, which will then serve to con-
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struct the other A-modules E via tensor products (cf. Section [4]). A4 carries a
natural connection d determined by the action of L:

d(&) a=é&a, tel,acA. » (4.1)
This connection is flat and local owing to [2.1](i) and (2.3).

[4.1] Tueorem. Let (L, A) be a graded Lie Cartan pair, with 6 =034, dA, dy;
O(E)=0,&), 0o(E), d(&); i(E), Ee L the classical operators attached to the A-connec-
tion (4.1).12 We have that

(i) A* (L, 4) equipped

— with the N-grading with restriction n on \" (L, A), the intrinsic grading
determined by

Dot =0[a(Ey, n &)= Y & &L 42)
: i=1 '
and the total grading du = 0,0+ n

— with the bilinear wedge product speciﬁed as follows: for a € AP (L, A)a;x and
Be A7 (L, A)% we set '

aAﬁ=(—1)qa°“%4%!)!Ap+q(oc®ﬂ), (4.3)"

where

(@®BYE1s s Epg) = (= 1Py, ey £,) By 15 s Epg)

(4.4)
&1 o &€ L of grades 084, ..., 0C,, resp. £, 15 ...,‘épﬂeL

— with the differential 5 =5,

is a bigraded differential algebra,'® graded commutative w.r.t. its total grading, with
A% (L, A) a differential subalgebra stable under 0(&), 6, and (&) for all £ L.

(ii) We have, moreover, the following derivation properties: for o,
Be N* (L, A), o of total grade du; and £ € L%, ne L, we have in addition to

S(a A B)=(6a) A B+ (—=1)"a A 8B, (4.5)
the properties

12 Note that since d is flat, one has 2 4¢&,4)=0, £, ne L; and 2, A =0.
13 See Appendix A for definitions.
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d/\(oc/\ﬂ)=(d/\oc)/\/3+(—l)"°‘a/\(dAﬂ) : ‘ (4.6)
So(@ A B)=(8ox) A B+ (—=1)"a A dof @)
0N A B)={0(8)a} A B+ (=1)%""a A {6(2) B} (4.8)
d(&)( A B)={d(&)a} A B+ (=1)""a A {d(&) B} (4.9)
0o(E)a A B)={0o(&) a} A B+ (—1)%"a A {80(¢) B} (4.10)
i(E) (e A B)={i(&) a} A B+ (=1)"FO%a A {i(£) B}. (4.11)

'[4.2] CoroLLARY. The operators 6, dA, 8y, 0(E), 0o(E), d(&), (&), fulfill the
relations (3.11) through (3.22), where p=d, Q4 &, 1)=0, and Q; A =0.

Proof of the corollary from the theorem. Since both sides of these relations are
derivations of the same type, it suffices, to check. the agreement in restriction to
A® (L, 4) and A' (L, A); this is, however, a special case of Lemma [3.3].

Proof of the theorem. Definitions (4.4) and (4.3) evidently specify bilinear
products ® and A. We check that these products are associative. Let «, § be as in
(43), vyeN(L,4) and ¢&,.4,..&¢,0,4.€L of respective  grades
08115 08,4 44 r- We have, owing to (4.4),

{(“®ﬂ)®?}(f1a ey ép+q+r)
= {a ® (B®Y)}(éls bt €p+q+r)

= (_ 1)60ﬂ2f=16€,-+6072‘,-’:1435i (x(€1> seey fp) ﬂ(ép+19 eoes £p+q) )’(Cp+q+la cory £p+q+r)

(4.12)
and, on the other hand, owing to (4.3) and (B.5) in Appendix B*
+q+r)! < .
oA (ﬂ A y):(_]_)(q+r)60a (_ﬁ.'_(;%;)_') Ap+q+,(oc®(ﬁ A 'y))
+ ‘+r! +r)!
—(—nyernneerap PRV @, g4, B0

pig+r) gq'r!

r)dox+r (p+ +r)! ‘
=(=1)4+ )‘ao + BOBT.ZT’TAP+q+,(a®ﬂ®Y)

Hoz L D+g+r)(p+g)!
= (—1)@=+0p) +q ot pidl Apigild,, (a®B)®7Y)

=( A f) Ay (4.13)

We proved that A* (L, 4) is an associative algebra under the wedge product A. It
is then an obvious consequence of definitions (4.3), (4.4) that A* (L, 4) becomes a

14 See Appendix B of [I] for more details.
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bigraded complex algebra with total grading (4.2) and N-grading as above. For the
rest of our proof we shall need properties of the wedge product gathered in the next
two lemmas.

[43] LeMMA. Let @y, .., ¢,, €A\ (L, A) of respective intrinsic grades
00@15  O0@p 1, and total grades 0., ..., 0@,; and let o€ X,,. We have that

QO APy A -+ A ¢n=(_1)(n—1)5o(01+(n—2)60€02+ "'+a°¢"“n!A,?((p1® ®¢")

(4.14)
0n(¢1® ®(pn)=Xn((0: ¥1) ¢a—113® ®§Da—l ' (415)
Q1A o AQ=(—1)ET =000 Ny (0,0) 0@ - ®P,,  (4.16)

e,

(see (B, 2) in Appendix B = for the definition of y,: x.@, ) =
X(‘O-)Zi>j,oi<aj60(pai60(paj) )

n+1

QLA AQpy= Z (—1)"a°(p"+?‘q"z;-‘;1‘a¢k PR{PLA - APiA - AP}
i=1 . .
(4.17)
» Proof. (4.14) is a special case of the formula
By A e A= (—DES N ®w)
i1 pi! (4.18)

we N” (L, 4)  with N,= Z Ds

proven in (4.13) for n=3 and obtained from there by induction w.r.t. n.
Proof of (4.15). We have

{0:(0:® - ®9,)}(&1, - E4)

=1n(& ONO1® - ® 0, }(Eo1s s Eon)

= Xn(&, O)(—1)27i1%0¢i%0 @ (£ 1) - @& m)

= Xal&, ) (—1)ERi00i%% y k(g (£,.), 07)
X @g-11(E1)s s Po-14(E,)

=126 0) 1 (0.08,), o TN(=1)" P {01, ® - ® -1, }(E1s 5 &)y (419)

where A=3,.;000,0,,, B=3%,.,;000,-1,0¢,, and
X (@8 07 =21 (94-1(8), 0)

= ( —1 )Zi>j,m‘<aj (Bowi+ 8Lgi)(Bo; + 8Eq))

=Xn (& o) (—1)CHPHE, (4.20)
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where
C= Z 60(01'60(171', D= Z ao("iaéaja E= z aQ(pjafoi'— (4.21)

i>j i>j i>j
gi<aj . ci<oj agi < oj

Now we have

A+D+E= Y 08,0,0,;+ ), 0,00,

i>j i<j

oi>aj oi>aj .
= Z aoq)iaéo’j: 2 a()qoo'—li 6€j=B- (4.22)
oi>gj i>j

Therefore the numerical factor in front of the last expression in (4.19) boils down to
1(6)(=1)C yielding (4.15), since one has C= Yisjo-lico1; 00Ps-1; 00 P o1,
Relation (4.16) then follows from (4.14) and (4.15). We now check (4 17) as follows
write (4.16) with n —»n+ 1 and decompose 2, , ; as follows:

n+1
Zo=U U foo; : (4.23)
i=1 ‘L'EE;
with o; and { the permutations
1,2, s evseverin ,n+1
9= (z’, Loimli+1,.,n+ 1> (4.24)
CA TR U S S 5
,\= > Lo ] b ) ,; 4‘25
' (i, 11, ey t(i—1), (i +1), ., ‘L'(rl+1))’ (4.25)

7 running through the group X% of permutations of {1, 2,..,i—1, i+1,..,n+1}.
We have ,

Tna2(@y 0:) = (—1)i= 1+ 000 Th dvor (4.26)

Xn+ 1((0 °0;, ai_lfoi) = Xn(gola ] (ah esesy ¢n+ 15 ‘C). (427)
We thus have, again using (4.16), ‘

(plA"" Aq)n+1=(_1)v Z Xn+1(¢70)(001® ®(pa(n+1)

c€Zniy
n41
=(_1)U z z Xn+1(¢’f°ai)
=1 teZ'
x¢l®¢r1® ®(PT(I 1)®¢r(1+1)® ®(pt(n+1)
n+1
=(_1)U Z Xn+1((paai) Z Xn((oi','-°> ¢i9---s (Pn-l—l;T)
i=1 te X,
XP;00,® - @@ 1)®(p1:(z+1)® c® Prns1)
n+1

=(_1)U Z Xn(¢a0i)¢i®(_l)V(P1/\ U APGIA A Qi
i=1
(4.28)
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with
U=ndy@,+(n—1) 800, + - +(n+1—10) 0o+ - + 000, (429)
Ve=(n—1)0g@,+ - +(n—i+1) 0@, + (n—1) 0o@ry 1+ - +86Pus1s
hence
i—1
U+V= Z 0o+ (n—i+1)0y0;; (4.30)
k=1
thus
(=17 g 1@, 0,) = (—1)P¢ Tz oot ndons; (4.31)

whence (4.17).

[44] LemMA. Letac A=A’ (L, 4), pe \' (L, A), and y e N\* (L, A) of respec-
tive intrinsic grades Oa, Oy, and 0yY. And let ﬁe/\" (L, A). We have, for
Eys s Enia€L of grades 04, ..., resp. 0F, . 5:

(@n )i, 8 =(=1""ap(ly, .. &) (4.32)

(0 A BNE1s o b)) = (— 1700 3 ()t bt i )
X Q&) B(Ers wor €y or ) (433)

W AB)Eis s Enua) = ‘—(—'1)"'w Y (— 1)+ 20B(@E+25)

I<i<jgsn+2

X l//(én é]) ﬂ(CIs oeey 619 s Ej, R €n+2) (434)

where the caret " indicates a missing argument and o; is as in (3.2).

Proof. Straightforward specializations of the definition (4.4): (4.32) -
immediate; (4 33), resp. (4.34), follows by writing X, ., =U%., Ua'eZ' Goa,, resp

Z, =t reZyToGU’ G;, 0y, G, £ the permutations
L2, n+1 ) i1
N B s V= (— () +itoa Tz o
g; (l, 1, s By .,i’l+ 1>, Xn+ 1(5: O-z) ( )
1,2, 3, cirnreenes n+2
I ’ ,o.)=—(—1)o;
% (i, Gy By s ...,n+2>’ Kn+2(8 05)= —(=1)ay
(4.35)
2 A TR s DU DR E Ja+1
G= :
iol,.,o(i—1),a(i+1),.,0(n+1)

Ll ., i—1Li+1, .., j=1j+1, ,n+2)
“\i ], e, ti— 1) i+ 1), (= 1), T(j+ 1), ., T(n +2)
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(ObSCrVC that Xn+ 1(60019 0' O-O-) Xn(él 0)) Xn+2(€°ay9 O' To-y) Xn(é T)’
Where &'= (&1, s Ery s €y 1)y €/ (E1y oy Ep s&js s Ens2):)

End of Proof of Theorem [4.1]. We shall perform the remaining‘proof replacing
A* (L, 4) by the subalgebra® A%y (L, 4) linearly generated by totally decom-
posable tensors (=generated by A' (L, 4) as an algebra). The results, in fact, hold
for A* (L, A) but on /\DR (L, A) one gets shorter and more instructive proofs using
induction arguments.¢

We first check the graded commutativity of A* (L A), whereby it suffices to con-
sider one-forms ¢,, ¢, A'(L, A) of respective intrinsic (resp. total) grades d,¢,,
0o @, (resp. 0@y, 0¢p,): we have from (4.17)

@1 A @y =(—1)%" {1 ®0,— (—1)o1%920,® ?1)
= — ( —1 )6o¢1 Bo@2+ o1 + Bop2
x (—1)%% {02®0,—(— 1)%71%92 9, @ @, }
=(—1)’7% ¢, A @,. (4.36)
We now prove the derivation properties (4.5) through (4.11). In view of Lemma
[A.1] in Appendix A, it is enough to check these properties for the first factor a of

the wedge product a zero- and a one-form: let thus ae 4 = A® (L, 4) with da=d,a;
pe N (L, A) with 6¢p =1+ 0,¢; and Be \" (L, A) with 0f =08, +n.

Proof of (4.7). We have, from (3.2) and (4.32),
dola n B)=(—1)"%do(aB)=(—1)"*a d,p
= (1)t Doa gAS B (—1)%q A §,f
=5aAB+(—1)"’“aAéoﬂ (4.37)

On the other hand, it follows from (44) and (3. 2) using (4.33) and (4.34), that we
have

, (P®B)E1, - Ens1)=(—1) % 9(&1) B(S2, s Enir) (4.38)
and, since (3o, &;)= —([£;, £21) (cf. (3.22)),
{0(@®B)}(Cr, wnbns)=— % (—1)CarInirey

1<i<j<€<n+2

X (50¢)(€n 6}) B(gla i) Ei: ] Eja bt €n+1)

=(=1)"%¢ {600 A B}(&1s s Enr1)s
(4.39)

13 DR stands for De Rham (since one obtains, in that way the classical De Rham complex in the case
A= C®(M)). Note that one has in general Afg (L, 4) = A% (L, 4).

16 See below for an alternative general proof. Note that A*(L, 4) is generated by AL (L, 4) as an
algebra if L is a finite projective A-module.
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we found that
So(@®B)=(—1)"2% (600) A B. (4.40)

Applying this to the r.hs~of (4.17) yields

n+1

i1 .
(@1 A - AQuiy)= Z (—1)%0Ze=102 (B3P ) A @y A - AP A - APy
i=1

n

=3 (~1)TE g A AGP A A Gy, (441)

i=1

where we used graded commutativity. Setting ¢ =¢, and =@, A --- A @, 4, this
yields an inductive proof of (4.7) for o= ¢.

Proof of (4.5) and (46). Since 6=0,=0,+dA, (4.5) follows from (4.6) and

(4.7). As for the latter, we have, from (3.3) on the one hand, using (4.32), (4.33),
d/\ (a/\ﬁ)(él9‘": én+l) ‘

n+1 :
=(—1y% Y (—1)! + i+ 0%i(0a + 80 + Xy 0%k)

i=1

X {(f,a) ﬂ(él, weey Ei: sy €n+l) + (— 1)6a o6 afi(ﬁ(il? =y Ei: ==y én+1))}
={dra)nB+(=1)"an @A} Cnir) (4.42)

On the other hand, for the calculation of d A (¢ A ) we note the analogy of for-
mula (4.33) and formula (3.3)!” which reads, for p=d

n+1

(@A DE1s oy Epar) = 3 (1)1 o0rz 200

xd(&) A&y s i bnr) (4.43)

We have to calculate (443) for A=¢ A B given by (4.33); we get a sum of
expressions of the type

dENP(E) By s &y s Eur1) e (444

where [ ] indicates the shift of variables &, ,—» ¢, .y, k=1,.,n+1—i
Because of the derivation property of d(¢;), (4.44) is a sum of two terms where
d(¢;) acts on the first, resp. second factor of the product [ ];. Now owing to the
analogy noted above and to associativity and graded commutativity of the
wedge product, the first summands will add up to (d A @) A B, and the second to
(=1 ¢ A (dAB) .

17 This analogy motivates the notation p A (note that p is of intrinsic grade 0 (cf. Definition [2.1]).

]
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Proof of (4.10). We first study the action of 8,(¢)on a tensor ‘product; we have,
from (4.4) and (3.5), for ae AP (L, A)sp0» BE N (L, A)pyp: ' ‘

{0o()@®B)} (&5 Epry)

= (—1)%BZko1 2%+ (pra)oc+1
{z( 1o SN (&, D6 s ) B ars s Errn)

g P p+i—1
+ Z (—1)% o+ BoB + k1 08k + 24 Zpi1 0%k)

X a(&la. eesy ép) ﬁ(£p+1’ biad] [éa ép+i]’ ovey €p+q)}

= (—1)7% (= 1)P0PZh= 108 {Q0(E) a1} (E1s oo &) BEpa 15 0 Ep)
+ (1) 8 @b+ The1 8 (8 oy E){06(E) BHCEps 15 Epd)
= {(=1)7%05(&) 4 ® B+ (= 1) % a®Bo(E) } (15 s Epvn)- (445)

We proved the property

o qvaf ' _ 1\0x B¢
0O @ f)=(—1)"*0(E)a®F+(-D**a@O) B O

e \* (L, 4)*  Be N\ (L,4), ¢EeL®
On the other hand, we have that 6,(¢) commutes with all permutations, thus with
A,:
00(6) 67.1 = 0',,_90(6),
60(8) A, = A4,0(Z).

Indeed 0,(¢) commutes with all transpositions t;: k <k +1, 1 <k<n—1: denoting
by 0i(&) A the ith term in the r.hs. of (3.5) we have namely

O5(EN T A) =1, {05(E) A}, k<i,k>i+1 4 .
0(E) (T A) =T, {05+ (&) A} (4.48)
08+ 1(E)(ed) = T, {O5(E) 1}

cel,, tel,
o (4.47)

Commuting 4, , and 6,(), we then have from (4.46)

Bo(E)(@ A )= (—1)7%" (’;Tq'f)! Ay (=175 0(&) 2@ B+ (— 1% a® 0o(2) B}

=04(E)a A B+ (—1)%% 0 A Bo(&) B. (4.49)
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Proof of (4.8) and (49). (4.8) follows from (4.10) and (4.9). For the latter, we
proceed as previously. We have, for a tensor product, from (4.4) and (3.6)

{d&)(@® )} (&1 s &)
= (— 1)+ D3+ 0BThur 2% G(E) [0y, s &) BEpats s )}
= (— 1) o+ ab Tt 2 {E{a(Ey, s &p)} - BlEpas s €pg)

+ (= 1)@+ 1080 (¢ ) ELB(Epr 15w Epig)])s  (450)
showing that we have

dE)@®p)=(—1)7%d(¢)a@ B+ (—1)**a®d() B,
(4.51)

ae N7 (L, 4 BeN'(L,4), (CeL%

from which (4.9) is proven as above, since d(¢) evidently commutes with ¢, 6 € X ,,.

Proof of (411). For a=pe A\' (L, A)s,, and fe A" (L, A)5,5, We note that this
amounts to the commutation relation '

LHE), @ A T=HEN@ A )= (=1)1H9D% (9 A) (€)= (=1)? % @(£) A. (4.52)
To check the latter, we write (4.33), isolating the first term:

(¢ A ﬁ)(éla Red] £n+1)

=(‘_1)" 09+ 041 208 ¢(€1) a(éZ’ wres 6n+1)
n+1

+( 1) z (— 1)1+k+a¢k<aoﬂ+z," 11"’5”<P(5k)ﬁ(§1,m, fk, "'>‘€n+1)'
k=2
(4.53)

We then have from (3.7), (4.32), (4.33),
{l(é)(w A ﬁ)}(éls ey én)

= (= 1)+ 100 EEn 200 o(£) Ly, ...y £n)

n+1
+ (= 1)+ 1+20+008) 2 +n 209 z (__1)1+k+6ék_1(aoﬁ+a{+}:f-‘=‘fa.§,»)
k=2

X @(Ek—1) BE Exs s Eirs s E0)
=(=D*% {o(&) A B} (&1, s &)
+(=1)AH% Lo A iE) B}(C1, s &) (4.54)

GRADED LIE-CARTAN PAIRS II 187

We have finished ‘the proof of the derivation propertles [4. 1](11) 18 We conclude
this section with three remarks.

First, our proof of these derivation properties entails a proof of the fact that 8,
dn, 8o, B(E), 0,(¢), d(&) leave A* (L, A) invariant. Indeed, we could have defined
these operators as the corresponding derivations with restrictions to A® (L, 4) and
A (L, A) specified in (3.4) for p=d (cf. Lemma [A.1]) (it is immediate that these
restrictions act within these spaces). The calculations in our proofs would then
show that this definition amounts to the specification by the formulae (3.5) through
(3.7) with p=d.

The present proofs make it intuitive that the derivation properties could be
checked directly from the definition formulae, and thus hold without the
assumption that A* (L, 4) is spanned by decomposable tensors. In fact we gave a
direct proof of (4.8), (4.9), (4.10). A direct verification of (4.11) is cumbersome but
practicable. For (4.7), direct verification is extremely cumbersome, but a general
proof is obtained by the following detour: one can directly verify the “Cartan
relation” (3.14) which, in combination with (4.8) then allows an inductive proof (cf.
[11).

We conclude with a remark about the relationship between the “classical differen-
tial forms” in A* (L, A) and Connes’ generalized differential forms in (A4) (cf. [7],
or [97 for the present Z/2-graded case). Since £2(4) is universal, and N (L, 4)=
we have by Corollary [1.97 in [9] the commutative diagram

£2(4)
(4.55)
4 — > AN*(L 4)

where the oblique arrow is a homomorphism of bigraded differential algebras (onto
NEr (L, A)); hence the classical differential forms are homomorphic images of

- elements of 2(A4) (cf. [8,9, Appendix E]).

5. Tae CrASSICAL OPERATORS ATTACHED TO
AN E-CONNECTION AS MODULE DERIVATIONS

In this section we take advantage of the isomorphism A*(L, E)=
E®A N* (L, A) to give a description of the classical operators attached to an
E-connection p in terms of the classical operators on A* (L, 4) attached to the
connection d described in the former section. This, together with the derivation
property of the latter, implies module-derivation properties, which in turn 1mp1y
Theorem [3.2](iii) in conjunctlon with Lemma [3.31].

18 These propertles could also be adapted from the corresponding results in [1].
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- [5.1] LemMAa. With (L, A) a graded Lie-Cartan pair, and E a graded unital
finite projective right A-module,"® the convention _

(X®@)(&is o &)= (—1)" " Xa(&y, - &), XEE ae \" (L, 4) (51)

establishes grade-zero isomorphisms

E®, \* (L, A)=\* (L E) | (5.2)

and
EQ®, N\ (L )=\ (L, E), (53)

where the tensor products in the Lh.s. of (5.2) and (5.3) are effected via the left
A-module structure of /\* (L, A), resp. \} (L, A), stemming from the identification
N (L, A)= NS (L, A)=A4,% ie.,

ac=an o, {aeA=/\°(L,A) (54)

Lae A* (L, 4) (resp. \4 (L, 4)).

" The set /\* (L, E) (resp. \* (L E)) then becomes a graded unital finite projective
right \* (L, A)-module (resp. )\ %-module), with

X®a) =X (x A f)

(5.5)
XeE, o Be\" (L A) (resp.e \* (L, 4)).

Note that the above identifications commute with the N-grading and the intrinsic
grading (hence the total grading) in the sense that

E®A4 N\ (L, )~ N\" (L, E), neN
(5.6)
E*@4 N\ (L, Ay =\" (L, Ey**,  pkeZ.

Proof. Tt is clear that (5.1) establishes a lmear map EQ A* (L, A)c A* (L, E)
for ® the tensor product over C. Moreover, since it gives, for ae 4’ o

(Xa®a)(éla ooy én) = (_1)n(6X+6a) Xaa(‘)::l’ ooy én)
=(=1)"*X{(a A a)(&;, . )} (5.7)

19 If we drop the finite projective assumption, we have.isomorphic inclusions instead of isomorphisms.
20 Note that this identification entails the identification E=E® 4 A° (L, 4) such that X=X®1,
X e E, in agreement with our former identifications E= A° (L, E).
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it follows from (5.4) that EQ 4 A* (L, 4) S A\* (L, E). However, with (e, &) a
coordinatization of the finite projective 4-module E, (e;®1, ¢'/®1) is a coor-
dinatization of the A* (L, 4)-module E® 4 A* (L, A), for which the e,;® A* (L, 4)
span A* (L, E): the above inclusion is thus surjective. Moreover, the isomorphism
(5.2) follows from the fact that we have, for a e A% (L, E), ac 4" &,, .., ¢, eL:

(X®a)(éla Rid] aéi: e én) =(_ l)nax Xa(éla it aéi’ R fn)
=(_1)nax+aaz,':=i+lazk Xd(fl, - &n) a
= (=1)% T ® (X @) (&, €} @ (58)

The next lemma now expresses the classical operators attached to an E-connec-
tion p in terms of those attached to the 4-connection d.

[5.2] Lemma. Let (L, A) be a graded Lie—Cartan pair, with p an E-connection.
We then have, for Xe E* and a.e \* (L, A), &, ne L', with X=X ®1 (cf. footnote 20)

§,(X®a)=(3,X)+(—1)* X® da (5.9)
pAX®D)=(p A X)at+(~1)*X@(@dAa) (5.10)
3e(X@a)=(—1)"* X® o , (5.11)
0,(E)X®a)={0,(¢) X} a+ (—1)*** X® {6(¢) «} (5.12)
0o(O)X @) =(—1)** X @ {04(¢) o} (5.13)
pPEYX®a)y={p(¢) X} a+ (—1)** X® {d(¢) a} (5.14)
()X ®a)=(—1)1+OX ¥ {i(&)a} (5.15)
Q,EMX@a)={2,(¢&n) X}« (5.16)
QA X®a)=(2, A X)o (5.17)

For the proof, we need -

[5.3] LemMa. For Ze A' (L, E)** and ae \" (L, A) we have, " indicating a
missing argument:

(Za)(él’ e £n+ 1)

= (=17 Y, (=) B Z(E) 6y e € s Ener). (518)

i=1
Proof. Immediate from (5.1), (5.4) and (4.3), (4.4).

Proof of Lemma [52]. Let ae A" (L, A) 0o and &,, ..., &, ,€ L’; (5.9) follows
from (5.10) and (5.11). Check of (5.10): we have using (3.3), (5.18), and (2.5), with
Bi=1+i+ 000+ i 9EL)
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{p A (X®OC)}(€1, ey €n+1)

n+1

‘ = z (—'l)ﬂi+a€iaxp(éi){(_1)n6XXa(€1:"-7 ED R €n+l)}
i=1 . .

n+1

=(_1)n5X Z (_1)/?;+6é;6X {p(éz)X} a(él?'"’ éia s én+1)}
i=1 .

n+1

+ (_l)naX Z (_l)ﬁ, éi{a(éls ey Eia ey én+l}
i=1 .

(oA X) ot (—1)F XD (A D)}y on by 1) (5.19)

Check of (5.11): using (3.2), with the notation o, there,
{50(X® 05)}(61, ---s‘€n+1) )
= Z (_1)a,~j+n(6X) Xa([éia ij]s éla e Eia ] Ej: Rt €n+1)

O<i<j<n+1

= (_l)n(ax) X{(éoa)(éla e &y 1)}
=(—1)*X®bx. (5.20)

Next, (5.12) follows from (5.13) and (5.14). Check of (5.12): we have, from (3.5),
Wit.h")’i= 0&(Boo + 25 08),

{00(5)(X® a)}(éls ey én)
=(_1)n6€+1+n6X i (_1)7i+6§6XXa(€1; s gi—h [é, éi]>‘éi+19 — én)

i=1
Lo (1)K Y 3 (LA G(Ey, s iy [EET Ern it o )
i=1
= (1) X&) a}(Ey, o E) |
= (= 1) (X 00(&) a}(Ers s £2). s (5.21)

Check of (5.14): we have from (3.6), using (2.5),

{P(‘:)(X®°C)}(él> ey in) = (-—1 )n o +nox p(é){Xa(§1> R in)}
=(=1)"+20 {p(&) X} a(&ys s &)
+ (_ 1)5§6X+HOXX(_1);16§ é{a(éla ey én)}

= {(p(&) X)® o+ (—1)% % X@ {d(&) a} } (¢4, - &),
(5.22)
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Check of (5.15): we have, from (3.7),

{HOX @)} (&1 oy Epa) = (— 1) R IELNX NG (E, 8y, 0y y)
— (_1)(a.f+1)ax+(n—1)aXX(_1)n+Boa oc(f, él’ s ;’:n_l)

= (=1)@@DHAX &) a} (€1, - Enm)- (5.23)

Check of (5.15): we have, from (3.8) and [2.27](iii),

{2,(&MX® )15 - &)= (= 1)+ Q (&, m){Xa(C,, - £n) )
= (_1)n(6€+6n+ax) {-Qp(fa W)X} 0‘(61, — 6’1)
={Q,EmnX}®e (5.24)

Check of (5.16): we have, from (3.9) and [2.2](iii), with «; as in (3.2),

{Qp A (X® a)}(fla ey €n+2)

= - z (— l)ocij+(3X+60«)(0§i+afj)+n6XQp(£i, éj){:Xu(fl: hiad] Eia At ¥ E ] €n+2)}
1<i<j<n+2

= {(‘QpX) a}(éla ey £n+2)‘ ' (525)

[5.3] THEOREM. Let [L, A] be a graded Lie—Cartan pair with p an E-connection.
The corresponding classical operators have the following properties: for &, neL
AEN* (L, E)Y=E® 4 N\* (L, A) of total grade 04, and o.c \* (L, A), we have

© 6, ()= (6,4) &+ (— 1) A6 (5.26)
pA(A)=(pAd)a+(—1)*UdAa) (5.27)

5o A (30) = (892) o+ (— 1) A(Soa) | (5.28)
0,(E)(Aa) = {0,(&) A} a+ (—1)** 2{6(¢) o} (5.29)
00(E)(A) = {0o(&) A} o+ (—=1)% % 2{06(&) o} (5.30)
P(E)(Aa) = {p(Z) 4} a+ (—=1)** 2{d(&) o} (531)
i(8)(Aa) = {i(E) A} a+ (— 1)1+ 1(5(E) o} (5.32)
Q,(& n)(dn) = {Q,(&n) A} « (5:33)
Q, A (Aa)=(Q, A A)o. (5.34)

Proof. 1t is enough to prove these relations for A=X® f, Xe E of grade 0X,
Be A\* (L, A) of total grade 0p, this allowing us to take advantage of the relations
in [5.27], combined with the derivation properties (4.5) through (4.12).
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Check of (5.26): we have
O,(X®B)a)=0,(X® (x A B))
=0, X)Q@aA B+ (—1)*X® {(6a) A B+ (— 1)"“ocA5ﬂ}
={(5,,X)oc+(—1)"XX®'5oc}ﬁ+(—1)a“'+"°‘X®(aAéﬁ)

={6,(X®a)} B+ (—1)°*®) (XQua) ip. (5.35)
The proofs of (5.27), (5.28) are identical, modulo the changes 6, — p, § = d A, resp.
6p - 50, o— 50.
Check of (5.29): we have
0,(O{(X®a) B}
=0,(E)(X® (x A B))

={0,(&) X}(@ A B)+ (—1)FX XQ[{6,(&) a} A B+ (—1)%%a A 6,(¢) B]
=[{0,(6) X} a4+ (—1)**X®6,(£)a] B+ (—1)PC*+2I X @ (a A 6,(¢) B)
={0,(E)X®«)} B+ (—1)7°F®) (X Qa)0,(¢) p. (5.36)

The proofs of (5.30), (5.31) are identical modulo the changes 0,(£)— 0,(&),

(&) = 04(£), resp. 0,(8) = p(&), O(8) —d().
Check of (5.32): we have

(O{(X®a) B)
=i){X® (a A B)}
={i(&) X}(@ A B)+ (=) +OX XQ[{i(¢) a} A B+ (—1)1 0% a A () B]
= [{i(8) X} a+ (= 1) +OX X@i(E) o] B+ (— 1)1 +¥OX T2 ¥ (4 £ i(8) B)
= {i{(}(X®a)} p+(—1)12D0X®) (X @a) i(£) B. _ (5:37)
Check of (5.33):

Q,EM{(X®x) B} =2, n)(X® (a A B))
={Q,(&n) X} an B)=[{2,(& n) X} a]lp
=[2,¢& nNX®a)] B. (538)
The proof of (5.39) is identical modulo the change Q,(¢, 1) —» 2, A. | |

End of proof of Theorem [3.2]. Relation [3.117]: (5.32) says that i(¢) is an
i(&)-derivation of the A* (L, A)-module A* (L, E). Hence [i(&),i(n)] is a
[i(&),i(n)]-derivation.?* Since the latter vanishes in grades 0 and 1 (cf. [3.3]), it

2l Cf. Appendix B.
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vanishes throughout. Relation (3.13): J, is a J-derivation by (5.6), hence

=3[6,,0,] is a [, 6] = O-derivation. But so is 2 A by (5.34) and the two agree
in grades 0 and 1. (3.13a) follows then from (3.13) by passing to the depletion, and
(3.19) by difference.??

Relation (3.14). [4,,i(¢)] is a [4, i(&)] = 6(&)-derivation (cf. [4.2]), and so is
6,(¢); and these agree in grades 0 and 1. (3.14a) then follows from (3.14) by passing
to the depletion.

Relation (3.15). [i(¢), 0,(n)] is a [i(&), O(n)]1=1i([£, n])-derivation (cf. [4.2])
and so is i([£, n]); and these agree in grades 0 and 1. (3.15a) then follows by
passing to the depletion.

Proof of (3.16). We have, from (3.13) and (3.14)

[HE), 2, AT=Ti(E), 671 =[i(€), 6,18, — (=1)'** 8,[i(¢), 6, ]
=(=1)%0,(8)8,-5,0,(6)= ~[5,,0,(5)]- (5.39)

APPENDIX A. GRADED ALGEBRAS, GRADED MODULES, AND DERIVATIONS

A 7/2-graded complex® vector. space is a complex vector space E with a direct
decomposition E= E°@ E! (or equivalently with a grading involution, i.e., a linear
operator ¢ of square 1 which determines E° and E' as its eigenspaces with eigen-
value +1, resp. —1). The elements of E°, resp. E, are called even, resp. odd, vec-
tors; their grade is by definition 0 mod 2, resp. 1 mod 2. The set E°UE! of
homogeneous elements of E will be denoted E".

A Z/2-graded complex algebra is a graded complex vector space </ = .glo@.sz{ !
with a bilinear product.. ‘

&(xda(é,b)—»abe&[ (A1)
such that
Al A, jel)2. (A2)
A Z/2-graded complex algebra 4 =A°@® A" is associative whenever one has
(ab) c=a(bc), a, b, ceA. : (A3)

22 Also results from the agreement in grades 0 and 1 of derivations of the same type.
B The specification “complex” could be replaced throughout by “real,” and will be omitted whenever
clear from the context.
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A complex Lie superalgebra L is a Z/2-graded complex algebra L= L°@ L' whose
product, called the bracket and denoted [, ], fulfills

[n 1= —(—=1y"[n,¢]

(A4)
(—=1)7" [& [1, 011+ (=1) [, [6, E1]+ (—=1)7 [0, [&,n]1=0

for &, n, O e L of respective grades p, g, r.
An associative Z/2-graded complex algebra 4 becomes a Lie superalgebra under

the graded commutator, bilinear extension of ;
[a,b]=ab—(—1y"ba, = aecA’ beA’. (A.5)

Let E be a Z/2-graded complex vector space with grading involution &. The set
End E of linear operators of E, equipped with the grading involution ade=¢-g isa
Z/2-graded complex associative algebra under the operator product—hence a com-
plex Lie superalgebra under the graded commutator of operators.

With A4 a Z/2-graded complex associative algebra the derivations of A are the
linear operators D of 4 fulfilling

D%(ab) = (D°a) b+ a(D°), . aed?, bed,

(A6)
DYab)=(D'a)b+(—1YaD'b, acAd’ beA.

Their set Der 4 is a sub- Lie superalgebra of the complex Lie superalgebra
(End 4, [, ]). '

Let A= A°® A* be a Z/2-graded complex associative algebra. A linear graded left
(resp. right) A-module is a complex Z/2-graded vector space E with a bilinear
product .

AxE>(a,X)—»aXeE ’ (A7)

(resp. Ex A3 (X, a) > Xa€E)
such thaf
AB L . (A.8)
(resp. E'A’ < E"”),ﬁ;‘,;‘ i,jeZ/2
and ”
a(bX)=(ab) X (A9)

(resp. (Xa) b= X(ab), a,bed, XeE.
With e (Der 4, a é- derwatzon of E is then a linear operator D of E of grade p
fulfilling
D(aX)=(6a) X+ (—1)" a DX, acA’, XeEF,

) (A.10)
(resp. D(Xa)= (DX) a+ (—1Y* X da, aecd’, XcE~
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(Note that the O-derivations of E are the homomorphisms of E)) With D a
d-derivation, and D’ a &'-derivation, of E, [D,D'] is a [§, §']-derivation of E.
Thus, in particular, the square D? of a §-derivation with 6 odd of vanishing square
is a homomorphism.

With 4 and B Z/2-graded complex associative algebras, a graded left A-, right
B-bimodule is a Z/2-graded complex vector space which is both a graded left
A-module and graded right 4-module with the additional property

(aX)b=a(Xb), XeE, acAd, beB (A.11)

(for B=A, E is called an A-bimodule).

With 4 a Z/2-graded complex associative algebra, E a graded right A-module,
and F a graded left 4-module, the tensor product E® , F of E and F over A is the
quotient of the tensor product E® F of the complex vector spaces E, F by the linear
subspace spanned by the elements Xa® Y—X®aY, a4, XeE, YeF.

If E is a graded left B-, right A-bimodule, and F is a graded left A-right
C-bimodule, B, C Z/2-graded associative algebras, E® , B is then a graded left
B-right C-bimodule with the rules

HX®Y)=bX)®R 7Y, beB,ceC, XeE, YeF,

‘ (A.12)
X®Y)c=X® (Yc), beB,ceC, XeE, YeF.

A 7/2-graded complex algebra 4 = A"G—)A1 is graded-commutative 1f dssociative
and such that

ba=(—1)" ab, ac A?, be A% (A.13)

Graded commutative algebras A are in many ways analogous to commutative
algebras (to which they reduce in the case of a trivial grading, ie., A=A,

={0}). For instance, for 4 graded commutative, each (graded linear) left
A-module E is turned into a (graded linear) right 4-module (and reciprocally) by
the convention

Xa=(—1)X%gx (A.14)

for X € E of grade 0X and a e A4 of grade da. We thus identify the concept of (graded
linear) left (or right) 4-module with that of (graded linear) A-bimodule fulfilling
(A.14), referring to these objects simply as A-modules.** In particular, the tensor
product E® , F of two (linear) 4-modules E and F over a graded commutative

* The notion of J-derivation is then the same. for the left and for the right module structure.
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algebra A has the structure of an A4-module, this holding also for the tensorial
powers E®4" of E, with the ensuing property

X,® - ®X,_®aX;®X;,,® - ®X,
=(—1)%TEMg(X,® - @ X,)
=(_1)aaz;,,.axk X;®---®X,)a (A.15)
X, eFE aeA't

The space Hom(E®4", F), F a graded linear 4-module, then identifies via the con-
vention

j'(A’la"'a Xn)=j'(Xl® '." ®Xn): XiEE9 ’ (A'16)

with the graded space ¥%(E, F) of F-valued n— A-linear forms on E, consisting of
the n-linear forms 2 =1°® A! on E with values in F and grading

00d=0M¢y, . &)= X 08, &y un GyEE (A.17)
k=1
satisfying

MX Ly s Xi_ 150Xy Xy gy oy X,) = (— 1)20@02+ZIZ00X0 g (XL X,)
=(—1)2Ti=%% J(X,, .. X,)a  (A.18)
X,eE aeA.

A further similarity of graded commutative algebras and abelian algebras is the fact
that, for 4 graded commutative, and ¢ € Der 4, a€ A4, af defined by (af) n=a(én),
ne A again belongs to Der 4, which thus becomes a left 4-module, hence making
(Der 4, A) a graded Lie—Cartan pair. : ’ .

A bigraded complex algebra is a.Z/2-graded complex algebra Q=07 @ Q2 (with
even part 2% and odd part 27~) equipped in addition with a decomposition’: _

2= o @A)
neN )
such that
Q".Q"=Q" " n,meN (A.20)
and
Q=" Q" where Q"* =Q"NQ* neN. (A.21)

By definition, the rotal grading 0w of we 2"* (resp. we 2"~ ) is 0 mod 2 (resp. 1
mod 2), its N-grading is n, and its intrinsic grading is 0yw = 0w —rn mod 2. (R, §) is
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a bigraded differential algebra if Q is as above and possesses a differential. 9§, ie., a
derivation of the Z/2-graded algebra Q = Q+ @ Q~ with N-grade and total grade 1:

O, neN, Q*tcQF, (A22)

and square zero: 6% =0. The special case of trivial intrinsic grading, d,w =0 (ie,
dw=n mod 2, we Q") corresponds to N-graded (differential) complex algebras.

We conclude with a characterization of the derivations of the bigraded
associative algebras for which 2 — Q° is generated by Q.

[A.l] LeMMA. Let Q=Q*® Q™ =@, 2" be a bigraded associative algebra
such that Q" is “universally spanned” by (2')", n>1.% s

(i) For the linear map D: Q2 — Q of total grade p to be a derivation of Q it
suffices that it fulfill

) D(aa)=(Da)a+(—1)pa“aDa ' (A.23)
and
D(pa)= (Do) o+ (—1)?% ¢ Da (A.24)

Sor all ae Q° of total grade da, all @ Q' of total grade 0@, and all ae Q", neN.
(i) Let Dy:2°— Q and D,: Q' - Q be linear maps of total grade p fulfilling

Do(ab) = (Doa) b+ (—1)"% Dyb
Dy(ap)=(Doa) ¢ + (—1) % Dog.

Then there is a unique derivation D of Q (w.r.t. the total grading) restricting to D, on
Q° and 1o D, on Q. Specifically, one has

(A.25)

D@1, s )= X (=114, s 0r (DO @iy 0 (A26)

i=1
Proof. (i) Assuming that the derivation property holds for o, :
| | D(aB)= (D) B+ (—1)"%* o D, (A27)
we have, for a and ¢ as in (A.2, 2), on the one hand,
D(azf) = (Da) B + (— 1) a D(af)
= (Da) af +(—1)* a(Da) B+ (—1)%* % go DB
= D(aa) B+ (—1)°“ (aa) DB (A.28)

25 In the sense that n-linear maps on Q! with appropriate symmetry (graded alternate in the case
Q=A* (L, 4)) extend to linear maps on Q".
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and, analogously,

D(paB) = (Dg) aB+ (—1)* ¢ D(aB)
=Doaf+(—1)% (Do) B+ (—1)**% @a DB
= D(ga) B+ (—1)*“*) ga DB, (A.29)

Thus (A.27) holds for ae, B and for ¢a, f. Hence it holds for arbitrary f and
A=ag, - ¢,, A€Qqy, ¢y, .., 9, Q" ie., o arbitrary.
(ii) Uniqueness. D restricts to D, on Q° and acts as in (A.2) on Q" by
repeated application of the derivation rule.
Existence. Guaranteed by (A.26) which defines D coherently as a linear
operator (cf. Footnote 25) and implies both (A.24) and (A.28).

APPENDIX B. GRADED ALTERNATE FORMS

Let A=A°@®A' be a Z/2-graded complex algebra, with F=F'@F' and
E=E’@E" two Z/2-graded vector spaces, and denote by #"(F, E) the complex
vector space of E-valued n-linear®® forms on F. With ce 2,, X, the group of per-
mutations of the # first integers, we define o, acting on £*(F, E) by the relation

(0, A)(& 15 s £n) = 2al &, ) A&o1s s Con)

, (B.1)
AeL"(F,E), {&i,-Cay=Ce(F)
with (&, o) = x(o) 37 (& o), x(c) the signature of o, and*
X}‘:‘(c, 0') = ( — 1)2i>j,ai<ajafai 0gj — (_ 1)2,—>j,,—1,-<‘,—1j 0%; 9%;. (B2)

The y,(¢, ¢) are groupoid characters in the sense
xn(& 01)=xa(€0, T) xul(&, 0), 0, TEX,, LE(F), (B3)

where (¢0);=¢&,;; furthermore they “split tensorially”:

SEX T, 0XT) =1, ) 1l Ty GEEnTE D, EE(FY, ne(F)" (B4)

We define the graded alternator as

Y o, (B.5)

o€,

With these definitions, we then have that

% p-linear means n — C-linear.

27 y+(E, ¢) is thus the sign obtained by combining all the minus signs arising from transpositions of
odd elements.
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(1) geZ,—a,is a linear representatlon of the group Z, on ¥*(F, E),(‘ nc
has ¢,-1,= (61), and (o,) "' = (¢~1!),) with the propertles :
0,A,=A4,0,=A4 cel,,

ns

entailing that 4, is an idempotent
A2=4,.

The range of A4, consists of the common fixed points of all ¢,, 6 €Z, called the
E-valued graded-alternate n-linear forms on F, whose set is denoted A" (F, E):

A" (F, E)=A"%"(F, E). | (B.8)
Note that A e #"(F, E) belongs to A" (F, E) iff
MEats s Eon) = Il O) AE 1y s En)s ity E€F (B9)

(i) Assuming 4 graded commutative, and E, F to be 4-modules, the subset
&n(F, E) of L"(F, E) consisting of n — A-linear forms (cf. A, 18) is left invariant by
all operators ¢,, c€2,: X, thus acts on £’ (F, E) with fixed points the F-valued
graded-alternate n — A4-linear forms on F, whose set we denote A" (F, E).
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