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We describe ab initio the algebraic features of "fermionic differential calculus"-the graded 
commutative generalization of the algebraic theory of exterior (covariant) derivatives, Lie­
derivatives, and interior products. Our study is centered around the (module) derivation 
properties of those operators. © 1987 Academic Press, Inc. 

1. INTRODUCTION 

This paper is a (self-contained) sequel to our paper [2] (quoted below as [I]), in 
which the Lie-Cartan pairs of [1], describing the algebraic features of the classical 
operators of differential geometry, are generalized to the graded commutative frame 
(case of "anticommuting variables"). 

We here present a variant of the formalism in [I] which is both mathematica1ly 
more systematic (with the algebra of differential forms graded commutative and all 
classical operators graded derivations for the total grading) and physically more 
relevant (as the algebraic extraction of the "fermionic differential calculus" having 
Berezin's integration as its integral calculus counterpart). 

Apart from a shift in content, the present paper offers a technique of proof 
independent of [I]~hence yieldjng a self-contained exposition. We mention in 
addition the proofs. obtained by adapting the results of [I], thus providing a 
welcome double check of the involved sign factors appearing in the formulae of 
both papers. 

As will become apparent~ both the classical identities relating exterior (covariant) 
derivatives, Lie derivatives and interior products (cf. Theorem [3.2](iii)), and the 
(module) derivation properties (cf. Theorems [4.1] and [5.3]), are identical with 
the corresponding features of usual differential geometry if written in terms of 
graded commutators, and if use is made of the total grading (sum of the order of 
the form and the intrinsic grading, the latter trivial in usual differential geometry). 
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Thus graded commutative algebras appear as the natural setting for phrasing the 
algorithmic aspects of differential geometry. From a spatial point of view, the 
graded-commutative generalization corresponds to the passage from usual differen­
tial manifolds to supermanifolds (cf. [3]). But the point of our study is to isolate 
algebraic aspects, dispensing with spatial constructions. In this respect we note that, 
while "spaces" and "commutative algebras" are categorically equivalent 
(specifically: locally compact spaces and abelian C*-algebras, via the Gelfand struc­
ture theory of the latter), we do not have an analogous general "spatial implemen­
tation" of gra~ed commutative algebras by means of super-manifolds (the reader 
may consult [4] for a discussion of related problems, and [5,6] for indications of 
directions for further work). 

We conclude this introduction with a description of the differences between the 
present formalism and that of [I]. The axioms of graded Lie-Cartan pairs remain 

i the same as in [I], as well as the definition of the E-connections relative to a 
r~=~~-~~grade(rA:module E, for a given Lie-Cartan pair (L, A). The differences appear at 
! the level of specifying the "classical operators" bp, bo, pA, 8p(~), 8o(~), p(~),i(~), 
·~~L,and the spaces on which they act. The modifications are as follows: 

(i) The sets /\ *(L, A) (resp. I\~(L, A)) of graded alternate A-valued 
C-multilinear (resp. A-multilinear) forms on L are unchanged, but the wedge 
product· ex A I3 is modified by addition of a sign 

( -1 )intrinsic grade of ex· N-grade of p. (1.1 ) 

This has the effect of making /\ *(L, A) and /\~(L, A) graded commutative algebras 
... w.r~t. the total grading. 

. The definition formulae for b p and p A are unchanged. But those of 8 p(~) ex, 
·Oo(~) ex, p(~) ex, and i(~) ex are modified by addition of a sign 

( -1)( -1 )grade of ~. N-grade of ex. (1.2) 

This lias the effect of making the· classical operators graded derivations uniformly· 
w.r.t: the total grading (with band pA of grade 1, 8p(~), 8o(~), and p(~) of grade 
a~, and i( ~) of grade a~ + 1).· 

(ii) For E a graded A-module, and p an E-connection (resp. a local E-con­
nection), the correspC!nding classical operators act on the (unchanged) space· 

E®c 1\ * (L, A) (1.3 ) 

(resp. 

E®A 1\: (L, A)), (1.4 ) 

now a right /\ * (L, A)-module (resp. /\~-module) for the new product structure of 
these algebras (cf. (1.1)). 
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Moreover, . the identification of the elements X ® ex of the above tensor produCts 
(1.3) (resp. (1.4)) with elements of 1\ * (L, E) (resp.l\~ (L, E)) is modified by inter­
position of a sign 

( -1 )grade of x· N-grade of ex. (1.5) 

The definition formula of bpA then remains unchanged, while those of 8p(~)and 
i( ~) are modified by adding a sign 

( -1 )grade of'; . N-grade of ex. (1.6) 

This has the effect of making all classical operators graded derivations of the module 
(1,3) (resp. (1.4)) w.r.t. to the total grading, namely bp a b-derivation of grade 1, 
8 (~) a 8(~)-derivation of grade a~, and i(~) an i(~)-derivation of grade 1 + a~. 

p Our exposition proceeds as follows: after defining graded Lie-Cartan pairs and 
their E-connections in Section· 2, the classical operators attached to a given E-con­
nection are defined in Section 3 which states in Theorem [3.2 J: (i) their property of 
preserving graded alternation; (ii) their "locality properties" for a local connection 
p; (iii) the classical identities which they fulfill-the latter being checked in low 
order (on zero- and one-forms). In Section 4 we study the particular case E = A, 
show that the sets 1\* (L, A) (resp. /\~ (L, A)) of graded alternate (resp. "local" 
graded alternate) forms are graded commutative bigraded differential algebras; and 
prove that the classical operators are graded derivations of those algebras 
(Theorem [4.1 ]-we give two ab initio proofs of the last fact). Section 5 returns to 
the general E-valued case, expresses the /\ * (L, E)-valued classical operators in 
terms of the /\ * (L, A)-valued ones (Lemma [5.2]), reduces the module-derivation 
properties of the first to the derivation properties of the latter (Theorem [5.3]) and 
uses these for proving the identities between classical operators. All these results are 
independently checked by adapting the results of [I] to the present modified frame. 

2. GRADED LIE-CARTAN PAIRS: E-CONNECTIONS 

[2.1] DEFINITION. A pair (L, A) of a Lie superalgebraL, and a graded com­
mutative algebra (both complex!, the latter with unit 1) is a graded Lie-Cartan pair 
whenever 

(i) we have a (grade zero) homomorphism2 

(2.1) 

1 In what follows the word "complex" could be replaced throughout by "real." 
2 In order to alleviate notation, and so as to generalize the usual notation in differential geometry, we 

write ~a instead of d(~) a. 
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of the Lie superalgebra L into the Lie superalgebra Der A of derivations3 of A; 

(ii) L is a graded left A-module, unital in the sense ~ ~ =~, ~ E L; 

(iii) we have the properties 

a(~b) = (a~) b, a, bEA, ~EL (2.3) 

and 

[~, a11] = (_l)0.;oa a[~, 1]] + (~a) 11, (2.4) 

where [] denotes a graded commutator and we denote by E the set of 
homogeneous elements of the graded vector space E = eo EB El(E = eo u El), with 
ox the grade of x E E. 

Given a graded unital A-module E (which we want to consider here as a right 
A-module4

) an E-connection p is a zero grade a::>linear assignment of a a::>linear 
operator p ( ~) in E to each ~ E L, fulfilling the property 

p(~)(Xa) = {p(~) X} a + (_I)o,;oX X(~a), (2.5) 

The corresponding curvature Q p is defined by 

(2.6) 

where [,] denotes graded commutators 5. The E-connection p is called local 
whenever it fulfills 

p(a~) X = ap(~) X, ~EL, aEA, (2.7) 

and flat whenever Q p =0 (i.e., whenever p is a representation of the Lie 
super31gebra L). 

[2.2] We recall that 

(i) the assumptions, made in [2.1], of the existence of a unit ~ in A is not a 
restriction in generality (cf. [I, [1.8]). One can drop this assumption, considering 
linear representation spaces E of A instead of A-modules. 

(ii) each graded Lie-Cartan pair (L, A) is accompanied by its depletion, the 
degenerate6 Lie-Cartan pair obtained by keeping all the products a~, and replacing 

3 Derivations in the graded commutative sense, i.e., sums of even derivations and odd anti­
derivations, with the graded commutator as the bracket. We recall that one has ~~ = 0 for all ~ E Der A. 

4 We recall that the notions of (graded unital) right A-module and left A-module coincide for a 
g~aded commutative algebra A (via the convention aX = ( -1 )oa oX Xa, X E E a E A' which makes E a 
blmodule). 

5 This will be the case throughout this paper. 
6 The Lie-Cartan pair (L, A) is degenerate whenever ~a = 0 for all ~ ELand a E A. 
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all the products ~a by zero, ~ EL, aEA (cf. [I, [1.4], [1.5], [1.6]). While the setof 
E-connections for a fixed E is generally an affine space, this space becomes linear 
(goes through the zero) for a degenerate Lie-Cartan pair. 

(iii) Qp(~, 1]) is a homomorphism of the A-module E (of grade o~ + 011 for ~, 
11 E E' cf. [I, [1.2]]). 

(iv) the map din (2.1) is a local and flat A-connection. 

[2.3] There are two distinguished A-modules, namely A and L. There exists a 
canonical, local, and flat A-connection p(~) == d(~) which will be discussed in 
Section 4. 

The second of the two distinguished modules, the A-module L, also hat a 
canonical flat connection: ,ad(~) == [~,,]. This connection is however nonlocal 
(unless (L, A) is degenerate). In general there exists no canonical local L-connec­
tion. For a generic L-connection V the torsion Tv of V is defined by 

The map Lx L 3 (~, 11) H T v(~' 11) E L is C-bilinear graded anti symmetric. If V is 
local then this map is also graded A-bilinear. 

3. THE CLASSICAL OPERATORS ATTACfIED TO AN E-CONNECTION 

[3.1] DEFINITIONS. Let (L, A) be a graded Lie-Cartan pair, with E a graded 
unital A-module, and p an E-connection. And denote 7 by f£1l(L, E) (resp. 
!l'~(L, E)) the set of E-valued n - C-linear (resp. n - A-linear) forms on A. The 
classical operators {)p, P/\, ()o; Op(~), Oo{~), p{~); i(~); Qp(~,11), Qp /\; ~,11EL' 
attached to the E-connection p are defined as follows on the space 
!l'*(L, E) = E9 Il E f'\J !l'1l(L, E): for A E !l'1l(L, E) of' intrinsic grade ooA, n ~ 1, and 
~, 11, ~1' ... , ~1l+2 E L' we set 

1.;;;i<j';;;Il+1 

i-I 

where (Xij = i + j + (O~i + O~j) I O~k + O~j 
k=1 

7 By definition .ff'°(L, E) = E. See Appendix A for definitions. 
8 The caret ~ means omission of the corresponding argument. 

(3.1 ) 

j-l 

I (3.2) 

k=i+l 
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and 

further 

with 
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n+I 
(p /\ A)(~l' ... , ~n+I) = I (_1)Pi p(~J A(~l' ... , ei' ... , ~n+ d, 

i= I 

where Pi = 1 + i + O~i (OOA + iII O~k)' 
k=l 

n 

(3.3 ) 

(3.4 ) 

{Oo(~) A}( ~ I, ... , ~n) = ( _l)n a~ + I I (-I)Yi A( ~ 1, ... , ~i-l' [~, ~J, ~i+ l' ..• , ~n)' 

finally 

i= 1 

where Yi = o~ (OOA + iII O~k) 
k=l 

00(0=0 on :eO(L,E)=E 

{i(~) A }(~1' ... , ~n- d = (_l)(n+oo).) a~ A(~, ~1"'" ~n- d 
i(~) = 0 on :eO(L, E) = E 

{Q p(~, 1'/) A}( ~ 1, ... , ~n) = ( -1 t(a~ + a'l) Q p(~, 1'/){ A( ~ l' ... , ~n)} 

1~i<j~n+2 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

The following theorem states the main properties of these classical operators­
apart from their module derivation properties discussed below in Section 5, whose 
description relies on the algebra /\ * (L, A) described in Section 4. 

[3.2J THEOREM. With (L, A), E, p, bp, bo, p /\, Op(~), Oo(~), p(~); i(~); Qp(~, 1'/), 
and Qp /\ as in [3.1J we have that 

9 Note that p(O, resp. Qp(~, '1), as defined in (3.6), resp. (3.8), extend p(~) and Qp(~, '1) originally 
defined on E= ,PO(L, E). . 
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(i) These operators leave invariant the set /\ * (L, E) of E-valued graded alter­
nate multilinear forms on L. Specifically, with /\ n (L, E)k the set of such n-forms of 
intrinsic grade iO k, A E /\ n (L, E) of intrinsic grade OoA, and ~, 1'/ E L' of respective 
grades o~, 01'/, we have that 

(3.10) 

/\
n+2 ) 

Q p /\ E (L, E ao). 

(ii) /\~ (L, E)= EBnEN /\~ (L, E) is stable under i(~) and Qp(~, 1'/); and, i/the 
connection p is local, under b p' e p( 0, ~ E L, and Q p /\ . 

(iii) We have the following relations, where [, J stands for graded com­
mutators w.r.t. the total grading 0 = 00 + n, and ~, 1'/ E L: 

[i(~), i(1'/)] =0 

[0 p( 0, 0 p( 1'/)] = 0 p( [~, 1'/ J) + Q p(~, 1'/) 

{)2 = Q /\ p p 

[()p, i(~)] = Op(O 

[i(~), Op(1'/)] = i([~, 1'/]) 

[b p, Op(~)] + [i(~), Qp /\ J =0 

[Oo(~), 00(1'/)] = Oo([~, 1'/J) 

b~=O 

[b o, i(~)] = Oo(~) 

[i(~), 00(1'/)] = i([~, 1'/]) 

[Oo(~), boJ =0. 

(3.11 ) 

(3.12) 

(3.13 ) 

(3.14) 

(3.15) 

(3.16) 

(3.l2a) 

(3.l3a) 

(3.l4a) 

(3.l5a) 

(3.l6a) 

10 See Appendix A, definition (A, 17). The total grade of A E I\n (L, Eh is, by definition, 
aA = aoA + n = k + n. We shall denote 1\ n (L, E)m the set of graded alternate n-forms of total grade m. 
Thus I\n (L, Eh=l\n (L, E)n+k, I\n(L, E)m=l\n (L, E)m+n> k, n+k, m, n+mE7L/2. Note that £5 0 , p 1\ 

and £5 p are of total grade 1; 00(0, p(~), Op(~) of total grade a~; and i(~) of total grade 1+a~, ~EL. 
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We have, consequently, 
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[Oo(~), p(1])J =0 

[p(~), p(1])] - p([~, 1]J) = Qp(~, 1]) 

[bo, (pA)] + (pA )2=Qp A 

[(p A ), i(~)J = 0 

[i(~), p(1])] =0. 

Proof For (i) and (ii) we refer to [I, 2.2 J 11. 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21 ) 

(iii) A first proof is obtained by adapting the results in [I, 2.3J to the change 
of definition (1.6) above. A second proof arises from the fact that both sides of each 
of the above relations (3.4) through (3.21) have the same nature as module 
derivations (cf. [5.3 J below)-while they agree in low grade: 

[3.3 J Lemma. Relations (3.4) through (3.15) hold in restriction to A 0 (L, E) 
and A 1 (L, E). . 

This lemma is checked using the definition formulae in [3.1 J whose low grade 
restrictions we list below: 

[3.4 J We have the following formulae for the classical operators in low grade: 
for Ao E A 0 (L, E)OAo, Al E Al (L, E)OAl, A2 E A2(L, E)OA2, and ~, 1], ~ b ~2' ~3 E L': 

(boAo)(~d = 0 

(boAd(~I' ~2)= -Al([~I' ~2J) 

(boA2)(~I' ~2' ~3)= -A2([~I' ~2J, ~3)+(-1)Oe20e3A2([~I' ~3J, ~2) 

- (_1)0el(Oe2+ 0e3) A2([~2' ~3J, ~d 

(p A Ao)(~d = ( -1 )Oel 00)·0 p(~d Ao 

(3.22) 

(p A Ad(~I' ~2) = (_1)0el 00..1.1 p(~d Al(~2) - (_1)Oe2(00)'1 +oed P(~2) Al(~d 

(p A A2)(~I' ~2' ~3) = (_1)0el 00..1.2 p(~d A2(~2' ~3) (3.23) 

- ( _1)0e2(00..1.2 + oed p( ~2) A2( ~ 1, ~3) 

+ ( -1 )Oe3(00)'2 + Oel + Oe2) p( ~3) A2( ~ b ~2) 

Oo(~) Ao = 0 

{00(0 Ad(~ d = - ( -1 )Oe(1 +Oo}·Il A1( [~, ~ IJ) (3.24 ) 

11 However, see remark at the end of Section 2 for an independent proof of (i). 
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p(~) Ao = p(~) Ao 

{p(~) Ad(~d = (_1)Oe p(~) Al(~d 

{p(~)AJ{~I' ~2)=p(~)A2(~I' ~2) 

i(~) Ao = 0 

i(~) Al = (_1)0e(1 + 00 A}) Al(~) 

{i(~) A2}(~d = (_1)0e 00..1.2 Ai~, ~d 

Q p(~, 1]) Ao = Q p(~, 1]) Ao 

{ Q p ( ~, 1]) Ad ( ~ d = ( - 1 ) oe + 0'1 Q P ( ~, 17) Al ( ~ d 

(Q p A AO)(~I' ~2) = ( -1 )OOAo(Oel + Oe2) Q P(~I' ~2) Ao 

(Q p A Ad(~I' ~2' ~3)= (_1)00Al(Oel+ Oe2) Qp(~I' ~2) 

- ( -1 )Oe2 Oe3 +OOAl(Oel + Oe2) Q p(~ l' ~3) Al(~2) 
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(3.25) 

(3.26) 

(3.27) 

+ (_1)(Oe2+ 0e3)(Oel+ OOA}) Qp(~2' ~3) Al(~d· (3.28) 

Proof of Lemma [3.3]. Straightforward verifications are immediate for 
AO (L, E). As for Al (L, E): (3.11) is immediate; (3.12) follows from (3.12a) (which 
boils down to the graded Jacobi identity), (3.17), and (3.18); (3.13) follows· from 
(3.13a) (again boiling down to the Jacobi identity) and (3.19) (straightforward-6 
terms cancelling in the calculation of [b o, P A J Ad; (3.14) follows from (3.14a) 
(immediate) and (3.20); (3.15) follows from (3.15a) and (3.21) (immediate). 

[3.4J Remark. The operator p(O defined in (3.6) is not a connection in the 
A * (L, A)-module A * (L, E). This can be cured by extending the definition (3.1): 
given a pair of connections (V, p), with V an L-connection and p an E-connection, 
one defines the operators Ov and Pv by 

n 

{OV(~)A}(~1'··"~n)=!(-1yoe+l I (-IVi 
i= 1 

X {A(~l' ... , ~i-l' [~, ~J + Tv(~, ~J, ~i+l' ••• , ~n)}' 

~ 1, ... , ~ n E L, ~ E L· 

(3.29) 

Then Pv is an A * (L, E)-connection which is local if p and V are local. In the par­
ticular case of V = ad we obtain Ov = 00 and Pv = 0 p (cf. [2.3 J). 

4. THE GRADED COMMUTATIVE DIFFERENTIAL ALGEBRA A * (L, A) 

We now study the basic A-module, namely A itself, which will then serve to con-
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struct the other A-modules E via tensor products (cf. Section [4]). A carries a 
natural connection d determined by the action of L: 

~EL, aEA. (4.1 ) 

This connection is flat and local owing to [2.1](i) and (2.3). 

[4.1J THEOREM. Let (L, A) be a graded Lie Cartan pair, with b=bd , dA, bo; 
e(~) = ei~), eo(~), d(~); i(~), ~ EL the classical operators attached to the A'-connec­
tion (4.1).12 We have that 

(i) 1\.* (L, A) equipped 

- with the N-grading with restriction n on I\. n (L, A), the intrinsic grading 
determined by 

n 

ooa = o[a(~I' ... , ~n)] - I a~i' (4.2) 
i= 1 

and the total grading oa = 00 a + n 

- with the bilinear wedge product specified as follows: for a E I\.P (L, Ay3cx and 
f3 E I\. q(L, A)OP we set 

where 

aAf3=(-l)qoOcx (p+q)! A (a®f3), 
p! q! p+q 

(a®f3)(~b ... , ~p+q)=(-l)ooPLf=10';ia(~I' ... , ~p)f3(~p+l' ... , ~p+q) 

~1' ••• , ~pEL" of grades 0~1' ... , o~p, resp. ~p+l' ... , ~p+qEL 

---,-- with the differential b = b d 

(4.3) 

(4.4) 

is a bigraded differential algebra,13 graded commutative w.r.t. its total grading, with 
1\.1 (L, A) a differential subalgebra stable under 8( ~), b, and i( 0 for all ~ E L. 

(ii) We have, moreover, the following derivation properties: for a, 
f3EI\.* (L,A), a of total grade oa; and ~EL°';, 1'/EL°t7, we have in addition to 

the properties 

12 Note that since d is flat, one has QJ,~, 11) = 0, ~, 11 E L; and Q d 1\ = 0. 
13 See' Appendix A for definitions. 

(4.5) 
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d A (a A f3) = (d A a) A f3 + ( - 1) ocx a A (d A f3) 

boCa A f3) = (boa) A f3 + (_l)0CX a A bof3 

8(~)(a A f3) = {8(~) a} A f3 + (_1)o.;ocx a A {8(~) f3} 

d(~)(a A f3)= {d(~)a} A f3+(-1)o,;oCX a A {d(~)f3} 

80(~)(a A p)= {80(~)a} A P+(_1)o,;oCX a AJ80(~)P} 
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(4.6) 

(4.7) 

(4.8) 

(4.9) 

( 4.10) 

i(~)(a A f3)= {i(~)a} A f3+(-1)(1+o';)OCX a A {i(~)P}. (4.11) 

[4.2] COROLLARY. The operators b, dA, bo, 8(~), 80R), d(~), i(~), fulfill the 
relations (3.11) through (3.22), where p = d, Qi~, 1'/) = 0, and Q d A = 0. 

Proof of the corollary from the theorem. Since both sides of these relations are 
derivations of the same type, it suffices, to check the agreement in restriction to 
1\.0 (L, A) and 1\.1 (L, A); this is, however, a special case of Lemma [3.3]. 

Proof of the theorem. Definitions (4.4) and (4.3) evidently specify bilinear 
products ® and A. We check that these products are associative. Let a, P be as in 
(4.3), YEl\.r(L,A) and ~p+l, ... ,~p+q+nEL" of respective grades 
O~P+l' ... , o~p+q+r' We have, owing to (4.4), 

{ (a ® P) ® Y } ( ~ 1, ... , ~ p + q + r) 

= {a ® (f3®y) }(~1' ... , ~p+q+r) 
-(_1)OoPLf=10';i+OOYLf!!O';ilV(.I= .1= ) fl(.I= .1= ),,(.1= .1=) 
- . lAo S 1, .•• , S p P S p + 1, •.• , S p + q I S P + q + 1, ••. , S p + q + r 

(4.12) 

and, on the other hand, owing to (4.3) and (B.5) in Appendix B 14 

a A (P A y)=(_l)(q+r)oocx (p+q+r)! A "r(a®(p A y)) 
p!(q + r)! p+q+ 

= (_1)(q+r)oocx+roop (p+q+r)! (q+r)! A (a®A (P®y)) 
p!(q + r)! q! r! p+q+r q+r 

= (_1)(q+r)oocx+rooP (p+q+r)! A (a®f3®") 
_ p! q! r! p+q+r I 

= (_1)r(oocx+ooP )+qOOCX (p+q+r)! (p+q)! A (A (a®f3)®") 
(p+q)!r! p!q! p+q+r p+q I 

= (a A P) A y. (4.13) 

We proved that I\. * (L, A) is an associative algebra under the wedge product A. It 
is then an obvious consequence of definitions (4.3), (4.4) that I\. * (L, A) becomes a 

14 See Appendix B of [IJ for more details. 
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bigraded complex algebra with total grading (4.2) and N-grading as above. For the 
rest of our proof we shall need properties of the wedge product gathered in the next 
two lemmas. 

[4.3] LEMMA. Let qJb ... , qJn+l E/\1 (L, A) of respective intrinsic grades 
OOqJb ... , OOqJn+l' and total grades OqJb ... , oqJn; and let uEIn. We have that 

qJ 1 /\ qJ2 /\ ... /\ qJn = ( -1 )(n -1) OOq>1 + (n - 2) OOq>2 + ... + OOq>n-1 n! An( qJ 1 Q9 ... Q9 qJn) 

(4.14 ) 

Un(qJIQ9 ... Q9qJn)=Xn(qJ,u- 1)qJu- Il,Q9 ... Q9qJu-In (4;15) 

qJl /\ ... /\ qJn = ( -l)L~':1 (n - i) °Oq>i I Xn( qJ, u) qJ ul Q9 ... Q9 qJun (4.16) 

(see (B, 2) in Appendix B for the definition of Xn: Xn( qJ, u) = 

X(u) Li>j,Ui<Uj OOqJUi ooqJuJ 
n+l 

qJl/\ ... /\CPn+l= I (_l)nooq>i+OlPiL~-:'\Oq>kCPiQ9{CP1/\ ... /\{f>i/\ ... /\CPn+d· 
i= I 

Proof (4.14) is a special case of the formula 

n 

with N s= I Ps 
i=s 

proven in (4.13) for n = 3 and obtained from there by induction w.r.t. n. 

Proof of (4.15). We have 

{Un(CPIQ9 ... Q9CPn)}(~I'···' ~n) 

= Xn(~' u){ CPl Q9 ... Q9 CPn}(~ub ... , ~un) 

= Xn(~' u)( _1)Li>jOoq>i oe"j CPl(~ul)··· qJn(~un) 

I = Xn(~' u)( _1)Li>jOoq>i oe"j X:(cp.(~u.)' u- 1) 

x CPu-Il(~d, ... , CPu-In(~n) 

= Xn(~' u) X:(cp.(~u.)' u- 1)( _1)A+B {CPu-II Q9 ... Q9 u-ln}(~I' ... , ~n)' 

( 4.17) 

( 4.18) 

( 4.19) 

(4.20) 
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where 

C = I 00CPi OoqJj' 
i>j 

D = I OOqJi O~uj' E= I OQCPjO~Ui. (4.21) 

ui<uj 

Now we have 

i>j 
ui>uj 

ui>uj 

i>j 
ui<uj 

i<j 
ui>uj 

i>j 

i>j 
ui<uj 

(4.22) 

Therefore the numerical factor in front of the last expression in (4.19) boils down to 
X(u)(-l)c yielding (4.15), since one hasC=Li>j,u-li<u-IjOoCPu-liooCPu-lj. 
Relation (4.16) then follows from (4.14) and (4.15). We now check (4.17) as follows: 
write (4.16) with n ~ n + 1 and decompose In+ 1 as follows: 

n+1 
I n + 1 = U Uioui (4.23) 

i= 1 .E.E~ 

with u i and i the permutations 

_ (1, 2, ............................. , n + 1) 
(J.-

I i, 1, ... , i-I, i + 1, ... , n + 1 
(4.24) 

i = (i' 1, ... , i-I, i + 1, ...................... , .n + 1) 
i, -rl, ... , -r(i - 1), -r(i + 1), ... , -r(n + 1) , 

(4.25) 

-r running through the group I~ of permutations of {I, 2, ... , i-I, i + 1, ... , n + I}. 
We have 

We thus have, again using (4.16), 

CP1/\ ... /\ CPn+1=(-l)U I Xn+1(CP,U)CPu1Q9 ... Q9CPu(n+1) 
UE.En+1 

n+1 
=(-1)~ I I Xn+1(cp,i o ui) 

i=1 .E~ 

XqJiQ9qJdQ9 ... Q9CP7:{i-1)Q9CP7:{i+1)Q9 ... Q9CP.(n+1) 
n+1 

=(_I)U I Xn+1(cp,UJ I Xn(CPr,···,{f>i,···,CPn+1;-r) 
i= 1 

x cP i Q9 qJ 1:1 Q9 ... Q9 CP.(i - 1) Q9 cP 7:{i + 1) Q9 ... Q9 cP .(n + 1) 

n+1 

(4.26) 

(4.27) 

= (-l)U I Xn(CP, u i) CPiQ9 (-l)V CP1 /\ ... /\ {f>i /\ ... /\ CPn+ 1 

i= 1 

(4.28) 
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with 

(4.29) 
V=(n-l)oo({Jl+ ... +(n-i+l)oo({Ji-l+(n-i)oo({Ji+l+ ... +OO({Jn+l; 

hence 

thus 

whence (4.17). 

i-I 

U+V= I 0o({Jk+(n-i+l)oo({Ji; 
k=1 

(4.30) 

(4.31 ) 

[4.4] LEMMA. Let aEA = /\0 (L, A), ({J E /\1 (L, A), and t/! E /\2 (L, A) ofrespec­
tive intrinsic grades oa, 00({J, and oot/!. And let 13 E /\ n (L, A). We have, for 
~1' ••• , ~n+2EL of grades O~I' ... , resp. O~n+2: 

(4.32 ) 

n+l 
(({J A 13)( ~ 1, ... , ~n+ d = ( _1)n aOfP I (-1)1 +i+a';i(aOP+ L~~11 a';i) 

i= 1 

l:S;;i<j:S;;n+2 

where the caret A indicates a missing argument and (Xij is as in (3.2). 

Proof Straightforward specializations of the definition (4.4 ): (4.32) is 
immediate; (4.33), resp. (4.34), follows by writing .En + 1 = U 7=1 U 0" E Ei 8- 0 (J i' resp. 
17 2 = U'!+12 U ~j i 0 (Ji;, (Ji' (Ji;, 8, i the permutations n n+ 1= 7:E£.iz ~ " , 
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(Observ~ that Xn+l(~o(Ji' (Ji~18(Ji)=Xn(~i, (J)~ Xn+2(~o(Jij' (Jijli(Jij}=Xn(~ij'L), 
where ~l= (~b ... , ~i' ... , ~n+d, ~ij= (~b ... , !i' ""~j' ... , ~n+2)') 

End of Proof of Theorem [4.1]. We shall perform the remaining proof replacing 
/\ * (L, A) by the subalgebra lS /\~R (L, A) linearly generated by totally decom­
posable tensors (=generated by /\1 (L, A) as an algebra). The results, in fact, hold 
for /\ * (L, A) but on /\~R (L, A) one gets shorter and more instructive proofs using 
induction arguments. 16 

We first check the graded commutativity of /\ * (L, A), whereby it suffices to con­
sider one-forms ({Jl' ({J2 E /\ I(L, A) of respective intrinsic (resp. total) grades OO<fJl' 
00({J2 (resp. O({JI' O({J2): we have from (4.17) 

({J 1 A ({J2 = ( -1 )aOfP1 {({J 1 ® ({J2 - ( -1 )aOfP1 aOfP2 <P2 ® ({J d 

x (_I)aOfP2 {<P2 ® <PI - (_I)aOfP1 aOfP2 CfJI ® ({J2} 

= (_l)a fP1 afP2 CfJ2 A ({J I' (4.36) 

We now prove the derivation properties (4.5) through (4.11). In view of Lemma 
[A.l] in Appendix A, it is enough to check these properties for the first factor (X of 
the wedge product a zero- and a one-form: let thus a E A = /\ 0 (L, A) with oa= ooa; 
({J E /\1 (L, A) with o({J = 1 + 00({J; and 13 E /\ n (L, A) with 013 = 0013 + n. 

Proof of (4.7). We have, from (3.2) and (4.32), 

<5o(a A 13) = (-ltaa <5o(af3) = (_I)naa a <5013 

= (_lt aa +(n+l)aa a/\<5o 13= (_I)aa a A <5013 

= <5a A 13 + ( -1 )aa a A <5013. (4.37) 

On the other hand, it follows from (4.4) and (3.2), using (4.33) and (4.34), that we 
have 

(CfJ®f3)(~l' ... , ~n+d= (_I)a';l aop CfJ(~d f3(~2' ... , ~n+d 

and, since (<50, ~2) = -({J([~I' ~2]) (cf. (3.22», 

X (<50({J)(~i' ~j) f3(~I' ... , !i' ... , !j' ... , ~n+d 

= ( - 1 )n aOfP {<5 0 ({J A f3}( ~ 1, .•. , ~ n + d, 

(4.38) 

( 4.39) 

15 DR stands for De Rham (since one obtain~,in that way the classical De Rham complex in the case 
A = C<Xl(M)). Note that one has in general /\t,R (L, A) c /\.! (L, A). 

16 See below for an alternative general proof. Note that /\.!(L, A) is generated by /\~ (L, A) as an 
algebra if L is a finite projective A-module. 
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we fnund that 

(4.40) 

Applying this to the r.h.:;:--of (4; 17) yields 

n+l 
bO(<Pl/\ ... /\ <Pn+l)= I (_l)0CP;Lt:'\OCPk (b<PJ /\ <Pl/\ ... /\ CPi /\ ... /\ <Pn+l 

i=1 

= f (_1)L~:110CPk<pl/\ ... /\ b<Pi/\ ... /\ <fJn+l' 
i= 1 

(4.41 ) 

where we used graded commutativity. Setting <P = <P 1 and fJ = <P2 /\ ... /\ <P n + 1, this 
yields an inductive proof of (4.7) for rx = <po . 

Proof of (4.5) and (4.6). Since b = bd = bo + d /\, (4.5) follows from (4.6) and 
(4.7r As for the latter, we have, from (3.3) on the one hand, using (4.32), (4.33), 

d /\ (a /\ fJ)( ~ 1; •.. , ~ n + 1) 

n+l 
= (-1toa I (_1)I+i+o~i(Oa+oOP+L~:,\0I;k) 

i=1 

x {(~ia) fJ(~I' ... , ei' ... , ~n+d+ (_1)oaol;; a~i(fJ(~I' ... , ei' ... , ~n+l))} 

= {Cd /\ a) /\ fJ+ (_1)0a a /\ (d /\ fJ)}(~b ... , ~n+l). (4.42) 

On the other hand, for the calculation of d /\ (<fJ /\ fJ) we note the analogy of for­
mula (4.33) and formula (3.3 )17 which reads, for p = d 

n+l 
(d /\ it)(~l' ... , ~n+d= I (_1)1-i+ol;i(OO;'L~:\0I;k) 

i=1 

We have to calculate (4.43) for it = <P /\ fJ given by (4.33); we get a sum of 
expressions of the type 

(4.44 ) 

where [] ei indicates the shift of variables ~ i + k ~ ~ i + k + l' k = 1, ... , n + 1 - i. 
Because of the derivation property of d(~i)' (4.44) is a sum of two terms where 
d(~J acts on the first, resp. second factor of the product [ ]~;. Now owing to the 
analogy noted above and to associativity and graded commutativity of the 
wedge product, the first summands will add up to (d /\ <p) /\ fJ, and the second to 
( -l)0CP <P /\ (d /\ fJ). . 

17 This analogy motivates the notation p/\ (note that p is of intrinsic grade 0 (cf. Definition [2.1J). 
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Proof of(4.10). We first study the action of Oo(~)on a tensor:produd; we have, 
from (4.4) and (3.5), for rx E /\P (L, A)ooco f3 E /\ q (L, A)oop: 

{Oo(~)(IX® fJ) }(~l' ... , ~p+q) 

i= 1 

x a(~l' ... , ~p) P(~p+ 1, ... , [~, ~p+;]' ... , ~p+ q)} 

= (-1)qo~ (_1)OoPL:k=10~k {Oo(~) IX}(~I' ... , ~p) fJ(~p+l' ... , ~p+q) 
+ (-l)ocxol;+(oOP+O~)L~=l Ol;k IX(~I' ... , ~p){Oo(~) fJ}(~P+l' ... , ~p+q) 

= {( -1)qo~ Oo(~) rX ® fJ + ( _1)0cx ol; IX ® Oo(~) }(~1' ~ •. , ~p+ 1)' (4.45) 

We proved the property 

(4.46) 

On the other hand, we have that Oo(~) commutes with all permutations,thus with 
An: 

Oof~) an = anOo(~), 

Oo(~) An = AnOo(~)· 
(4.47) 

Indeed Oo(~) commutes with all transpositions 7:k: k ~ k + 1, 1 ~ k ~ n -1: denoting 
by OM~) it the ith term in the r.h.s. of (3.5) we have namely . 

O~(~)(7:kit) = 7:k{ O~(~) it}, 

O~(~)(7:kit) = 7:k{ O~+ 1(~) it} 

O~+ 1( ~)( 7:kit) = 7:k{ O~(~) it}. 

k<i, k>i+ 1 

Commuting A p + q and Oo(~), we then have from (4.46) 

(4.48) 

Oo( ~)(rx /\ fJ) = ( -1)q oocx (p 7 ~ )! Ap + q{ ( -1)q ol; Oo(~) rx ® P + ( -1 )OCX 01; rx ® Oo(~) fJ} 
p. q .. 

=eo(~)1X /\ fJ+(-1)°~ocxrx l\.eo(~)f3. (4.49) 
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Proof of (4.8) and (4.9). (4.8) follows from (4.10) and (4.9). For the latter, we 
proceed as previously. We have, for a tensor product, from (4.4) and (3.6) 

{d(~)(ct®f3)}(~1' ... , ~p) 

= ( -1 )(p+ q) a~ + aofJ'I:.f=1 a~k d(~){ ct( ~ 1, ... , ~p) f3(~p+ 1, ... , ~p +q)} 

= ( -l)(p+q) a~ +aofJ'I:.~=1 a~k {~{ ct(~1' ... , ~p)} . f3(~p+ 1, ... , ~p+q) 

+ (_l)a~(aOCX+'I:.f=la~k) ct(~1' ... , ~p) ~[f3(~p+1' ... , ~p+q)]}, (4.50) 

showing that we have 

d( ~)( ct ® f3) = ( - 1 ) q a~ d( ~) ct ® f3 + ( - 1 ) acx a~ ct ® d( ~) f3, 
(4.51 ) 

from which (4.9) is proven as above, since d(~) evidently commutes with () n' () E En. 

Proof of (4.11). For ct = '<p E /\ 1 (L, A )aOfP and f3 E /\ n (L, A )aofJ' we note that this 
amounts to the commutation relation 

[i(O, <p A] = i(~)(<p A) - (_l)(1+a~)afP (<p A) i(~) = (_l)afPa~ <p(~) A. (4.52) 

To check the latter, we write (4.33), isolating the first term: 

(<p 1\ f3)(~~, ... , ~n+1) 

k=2 

We then have from (3.7), (4.32), (4.33), 

{i(~)(<p A f3)}(~1' ... , ~n) 

n+1 

(4.53) 

+ ( _l)(n + 1 + aOfP + aofJ) a~ +n aOfP I (_1)1 +k+a~k-l(aofJ+ a~ + 'I:.~,:} a~i) 

k=2 

x <p(~k-d f3(~, ~1' ••• , ek-1, ... , ~n) 

= (_1)afPa~ {<p(~) 1\ f3}(~1' ... , ~n) 

+ ( -1)(1 + a~)afP {<p 1\ i(~) P}( ~ b ... , ~n). (4.54 ) 
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We have finished the proof of the derivation properties [4.1](ii).18 We conchide 
this section with three remarks. 

First, our proof of these derivation properties entails a proof of the fact that b; 
dl\, bo, e(~), eo(~), d(~) leave /\* (L, A) invariant. Indeed, we could have defined 
these operators as the corresponding derivations with restrictions to /\0 (L, A) and 
/\ 1 (L, A) specified in (3.4) for p = d (cf. Lemma [A.l]) (it is immediate that these 
restrictions act within these spaces). The calculations in our proofs would then 
show that this definition amounts to the specification by the formulae (3.5) through 
(3.7) with p = d. 

The present proofs make it intuitive that the derivation properties could be 
checked directly from the definition formulae, and thus hold without the 
assumption that /\ * (L, A) is spanned by decomposable tensors. In fact we gave a 
direct proof of (4.8), (4.9), (4.10). A direct verification of (4.11) is cumbersome but 
practicable. For (4.7), direct verification is extremely cumbersome, but a general 
proof is obtained by the following detour: one can directly verify the "Cartan 
relation" (3.14) which, in combination with (4.8) then allows an inductive proof (cf. 
[I]). 

We conclude with a remark about the relationship between the "classical differen­
tial forms" in /\ * (L, A) and Connes' generalized differential forms in Q(A) (cf. [7], 
or [9] for the present Zj2-graded case). Since Q(A) is universal, . and /\0 (L, A) = A, 
we have by Corollary [1.9] in [9] the commutative diagram 

~Q. (A)~ . ··t ~ ... 
A c ) J\ * (L, A) 

(4.55) 

where the oblique arrow is a homomorphism of bigraded differential algebras (onto 
/\f>R (L, A)); hence the classical differential forms are homomorphic images of 

. elements of Q(A) (cf. [8,9, Appendix E]). 

5. THE CLASSICAL OPERATORS ATTACHED TO 

AN E-CONNEcnON AS MODULE DERIV A nONS 

In this section we take advantage of the isomorphism /\ * (L, E) = 
E ®A /\ * (L, A) to give a description of the classical operators attached to an 
E-connection p in terms of the classical operators on /\ * (L, A) attached to the 
connection d described in the former section. This, together with the derivation 
property of the latter, implies module-derivation properties, which in turn imply 
Theorem [3.2](iii) in conjunction with Lemma [3.3]. 

18 These properties could also be adapted from the corresponding results in [I]. 
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[5.1J LEMMA. With (L,fi) a graded Lie-Cartan pair, and E a graded unital 
finite projective right A-module,19 the convention 

XEE' aE An (L, A) (5.1) 

establishes grade-zero isomorphisms 

E ® A A * (L, A) ~ A * (L, E) (5.2) 

and 

E®A A: (L, A) ~ A: (L, E), (5.3) 

where the tensor products in the l.h.s. of (5.2) and (5.3) are effected via the left 
. A-module structure of A * (L, A), resp. I\~ (L, A), stemming from the identification 

1\0 (L, A)=I\~ (L, A)=A,20 Le., 

aa=aA a, {
aEA = 1\0 (L, A) 

.. aE 1\ * (L, A) (resp.I\A (L, A». 
. (5.4) 

The set 1\*(L, E) (resp. I\~ (L, E» then becomes a graded unital finite projective 
right 1\* (L, A)-module (resp. /\~-module), with . . 

(X®a) [J=X®(a A [J) 
(5.5) 

XEE, a, PEA * (L, A) (resp. E A: (L, A». 

Note that the above identifications commute with the N-grading and the intrinsic 
grading (hence the total grading) in the sense that 

E®A An (L, A) ~ An (L, E), 

(5.6) 
Ek®A An (L, A)P = An (L, E)p+k, p, kE 7Lj2. 

Proof It is clear that (5.1) establishes a linear map E® 1\ * (L, A) c 1\ * (L, E), 
for ® the tensor product over C. Moreover, since it gives, for a E A' 

(Xa®a)(~I' ... , ~n) = (_1)n(oX+oa) Xaa(~I' ... , ~n) 

= (-lt oX X{(a /\ a)(~b ... , ~n)} (5.7) 

19 If we drop the finite projective assumption, we have isomorphic inclusions instead of isomorphisms. 
20 Note that this identification entails the identification E = E ® A A 0 (L, A) such that X = X ® ~, 

X E E, in agreement with our former identifications E = A 0 (L, E). 
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it follows from (5.4) that E®AI\*(L,A) ~ 1\* (L,E). However, with (ei,e i) a 
coordinatization of the finite projective A -module E, (e i ® ~, ei ® ~) is a coor­
dinatization of the 1\ * (L, A)-module E®A 1\ * (L, A), for which the ei® 1\ * (L, A) 
span 1\ * (L, E): the above inclusion is thus surjective. Moreover, the isomorphism 
(5.2) follows from the fact that we have, for aE I\~ (L, E), aEA' ~b ... , ~kEL': 

(X® a)(~b ... , a~i' ... , ~n) = (-lt oX Xa(~b ... , a~i' ... , ~n) 

= ( -1)n ax + oa :EZ=i+l Ol;k Xa( ~ 1, ... , ~n) a 

(5.8) 

The next lemma now expresses the classical operators attached to an E-connec­
tion p in terms of those attached to the A -connection d. 

[5.2J LEMMA. Let (L, A) be a graded Lie-Cartan pair, with p an E-connection . 
We then have,for X E E' and a E 1\ * (L, A), ~,17 E L', with X = X® ~ (cffootnote 20) 

bp(X®a) = (bpX) + (_l)OX X®ba 

p A (X ® a) = (p A X) a + ( -1 )oX X ® (d A a) 

bo(X® a) = ( _1)ox X® boa 

ep(~)(X®a) = {ep(~) X} a+ (_l)ol;oX X® {e(~) a} 

eo(~)(X® a) = (-1)0~ ax X® {eo(~) a} 

p(~)(X® a)~= {p(~) X} a + (_1)°l;ooX X® {d(~) a} 

i(~)(X® a) = ( _1)(1 +01;) ax X® {i(~) a} 

Dp(~, 17)(X®a) = {Dp(~, 17) X} a 

Dp A (X®a)= (Dp A X) a. 

For the proof, we need· 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14 ) 

(5.15) 

(5.16) 

(5~17) 

[5.3 J LEMMA. For Z E 1\ 1 (L, E)OZ and a E 1\ n (L, A) we have, indicating a 
missing argument: 

n+l 
=(_1)nooz L (_lp+i+Ol;i(OOo:+L~-:,110I;k)Z(~i)a(~1, ... ,ei""'~n+d. (5.18) 

i= 1 

Proof Immediate from (5.1), (5.4) and (4.3), (4.4). 

Proof of Lemma [5.2]. Let aE I\n (L, A) ooa and ~1' ... , ~n+2 ED; (5.9) follows 
from (5.10) and (5.11). Check of (5.10): we have, using (3.3), (5.18), and (2.5), with 
Pi = 1 + i + o~i(oOa + L~~\ O~k) 
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i= 1 

i= 1 

n+l 
+ (_1)nox I (_1)Pi ~i{a(~l' ... , ei' ... , ~n+d 

i= 1 

(5.19) 

Check of (5.11): using (3.2), with the notation aij there, 

O~i<:j~n+l 

= (_1)n(oX) X{(bOa)(~l' ... , ~n+l)} 

= (_l)OX X® boa. (5.20) 

Next, (5.12) follows from (5.13) and (5.14). Check of (5.12): we have, from (3.5), 
with 'Yi= o~(ooa + L:t.\ O~k)' 

n 

= (_1)nO~+l+nox I (_1Fi+0~OX Xag 1 , ••• , ~i-b [~, ~iJ, ~i+l' ... , ~n) 
i= 1 

n 

( 1 ) O~ ax + n ax + n o~ + 1 X "( 1 )')Ii (J: J:' [J: J:] J: J: ) - = - L. - a Sl,···,Si-l, S,Si ,Si+b···,Sn 
i= 1 

= (_1)a~ox+nox X{Oo(~) a}(~b ... , ~n) 

= (-1)0~ ax {X® 80(~) a }(~l' ... , ~n). 

Check of (5.14): we have from (3.6), using (2.5), 

{p(~)(X®a)}(~l' ... , ~n)= (_lyo~+noX p(~){Xa(~l' ... , ~n)} 

= (_lY(O~+oX) {p(~) X} a(~l' ... , ~n) 

+ ( - 1 )O~ ax + n ax X( - 1 Y a~ ~ { a( ~ 1, ... , ~ n)} 

(5.21 ) 

= {(p(~) X) ® a + (_1)0~ ax X® {d(~) a} }(~1' ... , ~n). 
(5.22) 

GRADED LIE-CART AN PAIRS II 191 

Check of (5.15): we have, from (3.7), 

{i(~)(X® a) }(~l' ... , ~n- d = ( _1)(n+oolX+oX) 0~+1I ax Xa(~, ~l' ... , ~n- d 
= (_l)(O~+l)oX+(n-l)oX X( _1Y+oolX a(~, ~1' ..• , ~n-d 

= (_1)(0~+1)oX {X®i(~) a}(~l' ... , ~n-d. (5.23) 

Check of (5.15): we have, from (3.8) and [2.2] (iii), 

{Dp(~, 17)(X®a)(~l' ... , ~n)= (_1y(0~+071)+noX Dp(~, 17){Xa(~l' ... , ~n)} 

= (_ly(o~+o71+oX) {Dp(~, 17rX} a(~l' ... , ~n) 

={Dp(~,17)X}®a. (5.24) 

Check of (5.16): we have, from (3.9) and [2.2](iii), with aij as in (3.2), 

{Dp /\ (X®a)}(~l' ... , ~n+2) 

" (1)lXi;+(OX+OOIX)(0~i+0~j)+noXD (J: J:){ VI'V(J: E. f. J: 2)} L. -" pSi, Sj ,AlA. Sl, ... , ~" ... , SJ'···' Sn+ 
1~i<j~n+2 

(5.25) 

[5.3] THEOREM. Let [L, A] be a graded Lie-Cartan pair with p an E-connection. 
The corresponding classical operators have the following properties: for ~, 17 E L· 
A E /\ * (L, E) = E®A /\ * (L, A) of total grade OA, and a E /\ * (L, A), we have 

, b p(Aa) = (b pA) a + (_1)02 A(ba) 

p /\ (Aa) = (p /\ A) a + (-1)0;' A(d /\ a) 

bo /\ (Aa) = (boA) a + (-1)0;' A(boa) 

8p(~)(Aa) = {8p(~) A} a+ (_1)a~a;. A{8(~) a} 

80(~)(Aa) = {80(0 A} a + (-1)0~ 0;' A{ 80(~) a} 

p(~)(A-O:) =" {p(O A} a + ( -1 )a~ 0). A{ d(~) a} 

i(~)(Aa) = {i(~) A} a+ (_1)(1+0~)0;' A{i(~) a} 

D p(~, 17)( Aa) = {D p(~, 17) A} a 

D p /\ (Aa) = (D p /\ A) a. 

(5.26) 

(5.27) 

(5.28) . 

(5.29) 

(5.30) 

(5.31 ) 

(5.32) 

(5.33 ) 

(5.34 ) 

Proof It is enough to prove these relations for A = X ® {3, X E E of grade ax, 
{3 E /\ * (L, A) of total grade 0{3, this allowing us to take advantage of the relations 
in [5.2], combined with the derivation properties (4.5) through (4.12). 
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Check of (5.26): we have 

<5p«X®{3) 0:) = <5 p(X® (0: 1\ {3)) 

= (<5 pX) ® 0: 1\ {3 + (_1)8X X® {(<50:) 1\ {3 + (_1)801 0: 1\ <5{3} 

= {(<5 pX) 0: + (_1)8X X®, <50:} {3 + (_1)8X+801 X® (0: 1\ <5{3) 

= {<5 p(X® o:)} {3 + (_1)8(X®0I) (X® 0:) <5{3. (5.35) 

The proofs of (5.27), (5.28) are identical, modulo the changes <5 p ~ p,<5 ~ d 1\ , resp. 
<5p~<5o, <5~<50· 

Check of (5.29): we have 

Op(~){(X®o:) {3} 

= 0 p( ~)(X® (0: 1\ {3)) 

= {Op(~) X}(o: 1\ {3) + (_1)8~8X X® [{ Op(~) o:} 1\ {3 + (_1)8~801 0: 1\ Op(~) {3] 

= [{Op(OX} 0:+(_1)8~8X X®Op(~)O:] {3+(_1)8~(8X+801)X®(o: 1\ Op(~){3) 

= {Op(~)(X®o:)} {3+( _1)8~8(X®0I) (X®o:) Op(~) {3. (5.36) 

The proofs of (5.30), (5.31) are identical modulo the changes Op(~) ~ Oo(~), 

O(~) ~ Oo( ~), resp. 0 p(~) ~ p( ~), O( 0 ~ d( ~). 
Check of (5.32): we have 

i(~){(X®o:) {3} 

= i(~){X® (0: 1\ {3)} 

= {i(~) X}( 0: 1\ {3) + ( -1)(1 + 8~) 8X X ® [ {i(~) o:} 1\ {3 + ( -1 )(1 + 8~) 801 0: 1\ i(~) {3] 

= [{i(~) X} 0: + ( _1)(1 +8~) X X® i(~) 0:] {3 + (-1)(1 +8m8X+801) X® (0: 1\ i(~) {3) 

= {iO(X® o:)} {3 + (_1)(1 +8~) 8(X®0I) (X® 0:) i(~) {3. (5.37) 

Check of (5.33): 

Qp(~, l1){(X®o:) {3} =Qp(~, I1)(X® (0: 1\ {3)) 

= {Qi~, 11) X}(o: 1\ {3) = [{Qp(~, rf) X} 0:] {3 

= [Qp(~, I1)(X®o:)] {3. (5.38) 

The proof of (5.39) is identical modulo the change Qp(~, 11) ~ Qp 1\. 

End of proof of Theorem [3.2]. Relation [3.11]: (5.32) says that i(~) is an 
i(~)-derivation of the /\ * (L, A)-module /\ * (L, E). Hence [i(~), i(l1)] is a 
[i( ~),i(11 )]-derivation. 21 Since the latter vanishes in grades 0 and 1 (cr. [3.3]), it 

21 Cf. Appendix B. 
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vanishes throughout. Relation (3.13): <5 p is a <5-derivation "by (5.6), hence 
b~ = ~ [b p' <5 p] is a [b, <5] = O-derivation. But so is Q 1\ by (5.34) and the two agree 
in grades 0 and 1. (3.13a) follows then from (3.13) by passing to the depletion, and 
(3.19) by difference. 22 

Relation (3.14). [<5 p, i(~)] is a [<5, i(~)] = O(~)-derivation (cf. [4.2]), and so is 
Op(~); and these agree in grades 0 and 1. (3.14a) then follows from (3.14) by passing 
to the depletion. 

Relation (3.15). [i(~), Op(l1)] is a [i(~), 0(11)] = i([~, l1])-derivation (cf. [4.2]) 
and so is i( [~, 11]); and these agree in grades 0 and 1. (3.15a) then follows by 
passing to the depletion. 

Proof of (3.16). We have, from (3.13) and (3.14) 

[i(~), Qp 1\] = [i(~), <5;] = [i(~), <5p]<5p-( _1)1+8~ <5p[i(~), <5p] 

= (_1)8~ Op(O bp - <5pOp(~) = -[bp, Op(~)]. (5.39) 

APPENDIX A. GRADED ALGEBRAS, GRADED MODULES, AND DERIVATIONS 

A 7L/2-graded complex23 vector space is a complex vector space E with a direct 
decomposition E == eo EEl E1 (or equivalently with a grading involution, i.e., a linear 
operator e of square ~ which determines eo and E1 as its eigenspaces with eigen­
value + 1, resp. -1). The elements of eo, resp. E1, are called even, resp. odd, vec­
tors; their grade is by definition 0 mod 2, resp. 1 mod 2. The set eo u El of 
homogeneous elements of E will be denoted E. 

A 7L/2-graded complex algebra is a graded complex vector space .91 = .910 EEl .91 1 

with a bilinear product.. 

(A.1) 

such that 

i, j E 7L/2. (A.2) 

A 7L/2-graded complex algebra A = AO EEl A 1 is associative whenever one has 

(ab) c = a( bc ), a, b, CEA. (A.3) 

22 Also results from the agreement in grades 0 and 1 of derivations of the same type. 
23 The specification "complex" could' be replaced throughout by "real," and will be omitted whenever 

clear from the context. 
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A complex Lie superalgebra L is a Z/2-graded complex algebra L = L OEB L 
1 

whose 
product, called the bracket and denoted [ , ], fulfills 

en, ~] = -( -l)pq [1], ~] 

(-l)pr [~, [1],0]] + (-l)qp [1], [0, ~]] + (_l)rq [0, [~, 1]]] = 0 
(A.4) 

for ~, 1], 0 E L' of respective grades p, q, r. 
An associative Z/2-graded complex algebra A becomes a Lie superalgebra under 

the graded commutator, bilinear extension of 

(A.5) 

Let E be a Z/2-graded complex vector space with grading involution 8. The set 
End E of linear operators of E, equipped with the grading involution ad 8 = 8 . 8, is a 
Z/2-graded complex associative algebra under the operator product-hence a com­
plex Lie superalgebra under the graded commutator of operators. 

With A a Z/2-graded complex associative algebra the derivations of A are the 
linear operators D of A fulfilling 

nO(ab) = (DOa) b + a(DOb), 
(A.6) 

Their set Der A is a sub- Lie superalgebra of the complex Lie superalgebra 
(EndA, [, ]). 

Let A = A ° ffi A 1 be a Z/2-graded complex associative algebra. A linear graded left 
(resp. right) A-module is a complex Z/2-graded vector space E with a bilinear 
product. 

such that 

and 

A XE3 (a, X) ~aXEE 

(resp. ExA3 (X, a) ~XaEE) 

a(bX) = (ab) X 

(resp. (X a) b = X( ab ), 

i, jE Z/2 

a, bEA, XEE. 

(A.7) 

(A.8) 

(A.9) 

With <5 E (Der A)p, a <5-derivation of E is then a linear operator D of E of grade p 

fulfilling 

D(aX) = (<5a) X + (_1)pi a DX, 

(resp. D(Xa) = (DX) a + ( _1)pk X <5a, 

aEAi, XEEk, 

aEAi, XEEk. 
(A.10) 
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(Note that the O-derivations of E are the homomorphisms of E.) With D a 
<5-derivation, and D' a <5'-derivation, of E, [D, D'] is a [<5, <5']-derivation of E 
Thus, in particular, the square D2 of a <5-derivation with <5 odd of vanishingsquar~ 
is a homomorphism. 
~ith A a~d B Z/2-graded complex associative algebras, a graded left A -, right 

B-blmodule IS a Z/2-graded complex vector space which is both a graded left 
A-module and graded right A-module with the additional property 

(aX) b = a(Xb), XEE, aEA, bEB (A.l1) 

(for B = A, E is called an A-bimodule). 
With A a Z/2-graded complex associative algebra, E a graded right A-module, 

and F a graded left A-module, the tensor product E®A F of E and F over A is the 
quotient of the tensor product E ® F of the complex vector spaces E, F by the linear 
subspace spanned by the elements X a ® Y - X ® a Y, a E A, X E E, Y E F. 

lf E is a graded left B-, right A-bimodule, and F is a graded left A-right 
C-bimodule, B, C Z/2-graded associative algebras, E ® A B is then a graded left 
B-right C-bimodule with the rules 

b(X® Y)= (bX)® Y, 

(X® Y) c=X® (Yc), 

bEB, CEC, XEE, YEF, 

bEB, CEC, XEE, Y~F. 
(A.12) 

A Z/2-graded complex algebra A = A ° EB A 1 is graded-commutative if associative 
and such that 

ba= (-l)Pq ab, (A.13) 

Graded commutative algebras A are in many ways analogous to commutative 
algebras (to which they reduce in the case ofa trivial grading, i.e., AO =A, 
Al = {O}). For instance, for A graded commutative, each (graded linear) left 
A-module E is turned into a (graded linear) right A-module (and reciprocally) by 
the convention 

Xa = (_l)oXoa aX (A.14) 

for X E E of grade ax and a E A of grade aa. We thus identify the concept of (graded 
linear) left (or right) A -module with that of (graded linear) A -bimodule fulfilling 
(A.14), referring to these objects simply as A-modules.24 In particular, the tensor 
product E®A F of two (linear) A-modules E and F over a graded commutative 

24 The notion of <5-derivation is then the same for the left and for the right module structure. 
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algebra A has the structure of an A-module, this holding also for the tensorial 
powers E® A n of E, with the ensuing property 

Xl® ... ®Xi- 1 ®aXi®Xi+l® ... ®Xn 

= (_1)oaL~:ll OXk a(Xl ® ... ® Xn) 

= (_1)oa Lk=iOXk (Xl ® ... ®Xn) a (A.1S) 
'. 

The space Hom(E®A n, F), F a graded linear A-module, then identifies via the con­
vention 

(A.16) 

with the graded space !l'~(E, F) of F-valued n - A-linear forms on E, consisting of 
the n-linear forms A= A 0 ill Al on E with values in F and grading 

n 

OoA=OA(~I' ... , ~n)- I O~b (A.17) 
k=1 

satisfying 

'(X X X X X ) - (_1)Oa(oOA+Lk:~OXk) aA(X X ) AI'···, i-l,a i' i+l,···, n - 1,···, n 

= (_1)oa Lk=iOXk 2(Xb ... , Xn) a (A.18) 

A further similarity of graded commutative algebras and abelian algebras is the fact 
that, for A graded commutative, and ~ E Der A, a E A, a~ defined by (a~) n = a( ~n), 
n E A again belongs to Der A, which thus becomes a left A-module, hence making 
(Der A, A) a graded Lie-Cartan pair. . 

A bigraded complex algebra is a· Zj2-graded complex algebra Q = Q + ill Q -:- . (with 
even part Q + and odd part Q -) equipped in addition with a decomposition 

(A.19) 
neN 

such that 

n,mEN (A.20) 

and 

where Qn± = Qn n Q±, n EN. (A.21 ) 

By definition, the total grading ow of w E Qn+ (resp. WE Qn-) is 0 mod 2 (resp. 1 
mod 2), its N-grading is n, and its intrinsic grading is oow = ow - n mod 2. (Q, (j) is 
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a bigraded differential algebra if Q is as above and possesses a differential. J, i.e., a 
derivation of the Zj2-graded algebra Q = Q + ill Q - with N-grade and total grade 1: 

nEN, (A.22) 

and square zero: J2 = O. The special case of trivial intrinsic grading, oow = 0 (i.e., 
ow = n mod 2, WE Qn) corresponds to N-graded (differential) complex algebras. 

We conclude with a characterization of the derivations of the bigraded 
associative algebras for which Q - QO is generated by Ql. 

[A.1J LEMMA. Let Q = Q + ill Q - = EB n EN Qn be a bigraded associative algebra 
such that Qn is "universally spanned" by (Qlt, n~ 1. 25 

(i) For the linear map D: Q --+ Q of total grade p to be a derivation of Q it 
suffices that it fulfill 

D(art) = (Da) rt + (-1)p°!X a Drt (A.23) 

and 

D( cprt) = (DqJ) rt + ( -1)P o<p qJ Drt (A.24) 

for all a E QO of total grade oa, all qJ E Ql of total grade. oqJ, and all rt E Qn, n E N. 

(ii) Let Do: QO --+ Q and D I : Ql --+ Q be linear maps of total grade p fulfilling 

Do(ab) = (Doa) b + (_1)P oa Dob 

DI(acp) = (Doa) qJ + (-1)p°a Dcp. 
(A.2S) 

Then there is a unique derivation D of Q (w.r.t. the total grading) restricting to Do on 
QO and to DI on Ql. Specifically, one has 

Proof (i) Assuming that the derivation property holds for rt, fJ: 

D(rtfJ) = (Drt) fJ + (-1)p°a rt DfJ, 

we have, for a and qJ as in (A.2, 2), on the one hand, 

D(artfJ) = (Da) rtfJ + (_1)oa a D(rtfJ) 

= (Da) rtfJ + (_1)oa a(Drt) fJ + (_1)oa+o!X art DfJ 

= D(art) fJ + (-1 )o(a!X) (art) DfJ 

(A.26) 

(A.27) 

(A.28) 

25 In the sense that n-linear maps ~n 0 1 with appropriate symmetry (graded alternate in the case 
0= 1\ * (L, A)) extend to linear maps on on. 
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and, analogously, 

D( qJa{3) = (DqJ) a{3 + ( -1 )oCP qJ D( a{3) 

= Dcpa{3 + (-l)0CP qJ(Da) {3 + (_l)0a+ocp qJa D{3 

= D( qJa) {3 + ( -1 )o(cpcx) qJa D{3. (A.29) 

Thus (A.27) holds for all., {3 and for qJa, {3. Hence it holds for arbitrary {3 and 
a=aqJ1"'qJp, aEQo, qJ1, ... , qJpEQI, i.e., a arbitrary. 

(ii) Uniqueness. D restricts to Do on QO and acts as in (A.2) on Qn by 
repeated application of the derivation rule. 

Existence. Guaranteed by (A.26) which defines D coherently as a linear 
operator (cf. Footnote 25) and implies both (A.24) and (A.28). 

APPENDIX B. GRADED ALTERNATE FORMS 

Let A = A 0 E9 A 1 be a Zj2-graded complex algebra, with F = pO E9 F1 and 
E = eo E9 E1 two Zj2-graded vector spaces, and denote by !/!n(F, E) the complex 
vector space of E-valued n-linear26 -forms on F.With (JEEn, En the group of per­
mutations of the n first integers, we define (J n acting on !/!n(F, E) by the relation 

((JnA)(~l' ... , ~n) = Xn(~' (J) A(~u1' ... , ~un) 

A E !/!n(F, E), { ~ 1, ... , ~ n} = ~ E (F·t 

The Xn(~' (J) are groupoid characters in the sense 

where (~(J) i = ~ ui; furthermore they "split tensorially": 

We define the graded alternator as 

With these definitions, we then have that 

26 n-linear means n -I(>linear. 

(B.l) 

(B.2) 

(B.3) 

(B.5) 

27 X;; ((, (1) is thus the sign obtained by combining all the minus signs arising from transpositions of 
odd elements. 
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(i) (J E En ~ (J n is a linear representation of the group En on !/!n(F, 
has (J n . 1" n = ((J1")n and ((J n) -1 = ((J -1 )n) with the properties28 

entailing that An is an idempotent 

(B.7) 

The range of An consists of the common fixed points of all (J n' (J E E, called the 
E-valued graded-alternate n-linear forms on F, whose set is denoted An (F, E): 

Note that A E !/!n(F, E) belongs to /\ n (F, E) iff 

A(~u1' ... , ~un) = Xn(~' (J) A(~l' ... , ~n)' 

(B.8) 

(B.9) 

(ii) Assuming A graded commutative, and E, F to be A-modules, the subset 
!/!~(F, E) of !/!n(F, E) consisting of n - A-linear forms (cf. A, 18) is left invariant by 
all operato~s (In' (JEEn:En thus acts on !/!~(F,E) with fixed points the F-valued 
graded-alternate n - A-linear forms on F, whose set we denote /\~ (F, E). 
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