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Abstract. Geodesics in a multidimensional Universe with G-invariant metric are studied
and differential equations describing their space-time projection are derived. It is shown
that, when internal spaces are cosets rather than group manifolds, then, in addition to the
colour charge through which the particle interacts with the gauge field, a new charge arises
which couples to the scalar fields only. This new charge, called the Higgs charge, is shown
to be of a nonlinear nature. For certain cosets it may contribute to the colour charge
non-conservation.

1. Introduction

Recently a geometrical theory of dimensional reduction was developed based on the
concept of G-invariance of a Riemannian metric in a multidimensional Universe [1].
In the present paper geodesics in a multidimensional Universe are studied, and it is
shown that the components of the velocity pointing into the extra dimensions give rise
to the coloured and higgsonic charges. From the formal point of view our equations
(5.1)~(5.3) generalise the well known Kerner—Wong equation (see [2--5], also [6] where
motion of a charged string is treated) in two ways: firstly, the internal space is taken
to be a homogeneous space G/H rather than a group manifold, and secondly,
interaction with the Jordan-Thierry scalars, originating from the metric on G/ H, is
taken into account. Before going into the details of this paper’s results, it is worthwhile
analysing the relation between the geometrical framework used in [1], and the, so-called,
Kaluza—Klein theory. The Kaluza—-Klein mechanism is supposed to work as follows
(see e.g.[7, 8], and references therein): one starts with a generally covariant field theory
in (4 + n) dimensions (e.g. eleven-dimensional supergravity), containing among its fields
{#} the metric field g45 (A, B=1,2,...,4+n). Suppose the theory admits a ground
state {¢} with the property that the (4 + n)-dimensional space E splits into a (local)
product E = M X S with respect to the ground state metric gap(X, ¥) = (£..(X), 8a5(»)),
with xe M, ye S. If M is four-dimensional of signature (+ — — —), and if S is compact,
then one says that a spontaneous compactification takes place. The next step to be
taken is called dimensional reduction. It is believed that the lowest excitations from
the ground state can be interpreted in terms of massless fields on M alone—the gravity,
Yang-Mills fields, scalars. A general geometrical framework taking care of the whole
mechanism has not yet been worked out, although much work has been recently done
in two directions: (a) constructing particular models of physical interest (e.g. [8-11]),
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and (b) elaborating mathematical apparatus describing selected features of the models
(e.g. [12-16]). Of particular interest are recent works on eleven-dimensional super-
gravity, where it was found that a ground state need not have as its symmetry group
G the maximal symmetry group allowed by the topology of the internal space S. For
example, the ground state metric of the eleven-dimensional gravity may have only
SO(5) xSU(2) (instead of SO(8)) symmetry (‘squashed seven-sphere’, [17]) or, another
p0551b111ty, the sphere can be metrically round, but the other fields may have non-zero
values ¢ # 0 in the ground state breaking the symmetry (from SO(8) down to SO(7) in
[18],[19]). In such cases it is of interest to study those excitations of the ground state
metric which have G as its symmetry group. It is this problem that was solved in [1]
(see also [16]). Under assumption that the internal space is a homogeneous space G/ H
it was shown that the most general G-invariant metric on M x(G/H) is described in
terms of metric g,,, on M, gauge field A, for the gauge group K = N(H)|H, and charged
scalar fields g,p describing internal geometry of S = G/ H. If H ={e} (i.e. if S is a group
manifold) then K = G, but for, say, G =SO(8), H =SO(7) one finds K = Z,, so that K
looks much smaller than one would expect. In general, therefore, the condition of
G-invariance will select only certain and not all zero modes. Thus, the analysis of
interaction of point particles with the massless fields g,., A, and g, given in the present
paper, should be extended when a geometry of a complete ansatz (see [7], [8]) is fully
understood, so that the interaction with the remaining massless modes can be taken into
account.

With the above in mind, let us make some more comments on the results of this
paper. It is important to observe that the Lie-algebra decomposition corresponding
to a homogeneous space G/ H is not ¥= ¥+, where & can be interpreted as the
space tangent to G/ H at the origin, but a more subtle one: =¥+ +.%, where J
is the Lie algebra of K= N(H)|H (the effective gauge group), N(H) being the
normaliser of H in G. Consequently the metric g, on S =G/ H splits into two kinds
of Jordan-Thierry-type fields: g, (a, b—the indices of ¥), and g4 (4, h—the indices
of #). It is shown that the interaction of the particle with both fields is of the form
Z°*D,g.s Z“* being composite: Z*# = A“A”. A% is just the coloured charge, interacting
with A,, while A® is a new charge, called a higgsonic charge. We give evolution
equations for all charges and argue that the Higgs charges are nonlinear: they take
values in the manifold #/Ad(H) of H-orbits in £ (H acting on ¥ by the adjoint
representation). Readers who are not interested in the details may get the idea of the
present paper by reading § 5 where the summary of results and a simple example are
given.

2. Geometry of a G-Universe

G-space is a pair (E, G), where E is a differentiable manifold and G is a group of
transformations of E. We shall assume that G is a compact Lie group acting smoothly
on E from the right. (Our discussion can also be applied for non-compact G but in
that case, at certain places, extra assumptions are to be made.)

A G-Universe is atriplet (E, G, g), where (E, G) is a G-space, and g is a Riemannian
metric on E which is G-invariant i.e.

8,(v1, 02) = gya(V14, 1:20), (2.1)
for all ye E, ae G, and v,, v,€ T,)E. Here va stands for (R,),v=dR,(v), where
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R,: y- ya is the right translation of ye E by ae G. It is assumed that E has only
one orbit type (for a compact G the principal orbit theorem [20] asserts that this is
always the case outside of a set of measure zero). Thus we assume that the isotropy
groups G, ={a € Glya = y} are all conjugated to a standard one, denoted by H. One
proves then (see the discussion and references in [1]) that E is a fibre bundle with
fibre H\G1 and base M = E/G—the space of orbits (observe that dim M =dim E —
(dim G —dim H)). Moreover, the submanifold P of E defined by

P {yeE|G,=H), 22)

consisting of all those points y € E of which the stability group is not only conjugated
but exactly equal to H, is a principal bundle with the same base M and structure
group K = N|H, where N is the normaliser of H in G

N={ne G|nHn'=H} 2.3)
(see figure 1).

Associated
E=PX¢(H\G) H\G
G,=H

y =TS Principal P yd K=NIKH
G, # H~_ [~ //////
k

Base M=£iG=PIK

Figure 1. The picture can be misleading since, in general, dim P <dim E.

One can also show that E can be considered as a bundle associated to P via the
canonical representation of K on H\G given by: [n]la]=[na], [n]e K = N|H, [a]e
H\G.

It is convenient to split the Lie algebra ¢ of G as follows (see [1])

b
G=9 +H +& (2.4)
N

where &N = # + X is a reductive (i.e. Ad(H)¥ < X) decomposition of the Lie algebra
N of N, and ¥=N+Z is a reductive (i.e. Ad(N)¥ < ¥) decomposition of 4. The
subspace & =% +.% can be identified with the space tangent to H\G at the origin.
We have

() (%, ¥]=0,

(i) [, X] <= X, 25)
(iii) Ad(H)Y < ¥,

(iv) AdN)Z< £,

+ We denote by H\G the space of right cosets of H in G which is a right G-space, and a left N-space (see
also [22, p 112]).
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and ¥ can be identified with the Lie algebra of K = N|H [1]. We shall assume that
H is connected?, in which case one also gets
H=F %y, (2.6)

where &, is the commutant (centraliser) of # in ¥ [21].
Let ¢ be a basis in ¥ adapted to the decomposition (2.4). The indices used for
basis vectors in a particular subspace of ¥ are shown in figure 2.

Kiabi..)

/: Fle,By....) ]

Gllijk,. ) gy n—

// $labe,. )

Figure 2.

For every £€ 4 we denote by £ the fundamental vector field generated by ¢:
£(y)=(d/dD)(y exp(1€)),_,: @7)

The fundamental vector fields corresponding to the basic vectors ¢; are denoted by e;
(they are Killing vectors for g). We have

[ei’ ej]= C:;ek’ (28)

where C:j- are structure constants of ¢ in the basis ¢;. The vector fields e4, corresponding
to the action of H, vanish on the submanifold P by (2.2). It follows that (e,) alone
constitute a frame for fundamental vectors on P, and therefore also in a certain
neighbourhood U of P. Thus in U

[eo:, eB] =f¢yzB e'y’ (2.9)
where the structure functions f7z(y), y € U, are constant on P
78(p)= Cls, peP (2.10)

by (2.8).

So far we have discussed only the structure of E resulting from the action of G.
We now turn to those important aspects of geometry of E which come from the
G-invariant Riemannian metric g in E. First of all each tangent space T,E decomposes
into

TLE=V,®H, (2.11)
where V, = {5( y)|£ € G}, called the vertical space at y, is the space tangent to the orbit
of G through y, and H, (called horizontal) is defined as the orthogonal complement

+ If this is not the case one may go to a covering E’ of E to get H,, the connected component of the identity
of H, as the isotropy group in E’.
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(with respect to the metric g) of V, in T,E. The vectors in V, and H, are called vertical
and horizontal respectively. We fix a coordinate system x* in an open domain W< M,
and denote by e, the horizontal lifts of vector fields 9, tangent to the coordinate lines.
The vector fields es = (e,, €,) now constitute a moving frame in Un ' (W)—see
figure 3.

0

P

W M

Figure 3. Vector fields e; and ¢, are (at pe P) mutually orthogonal and tangent to P.
Vector fields e, are (on P) orthogonal to P.

Owing to the relation (2.6) the restrictions of the adjoint representation of H to &%
and & respectively are disjoint, which implies that the vector fields e, and e; are
mutually orthogonal with respect to the invariant metric g [23].

In [1] a reduction theorem was proven giving a complete description of geometry
of G-Universes—it was shown that a G-invariant Riemannian metric g = (gap) on E
is equivalent to a triple (0f, 8, 8ap), Where % is a one-form of a principal connection
in P, (g,.) is a Riemannian metric on M, and (g,s) is a cross-section of a certain vector
bundle associated to P. This reduction theorem gives thus a theory of the Kaluza—Klein
type, for homogeneous fibres and with generalised Jordan—Thierry-type scalars g.g.
The three ingredients w?, 8., and g.g of a G-invariant metric g =(gap) =[g(ea, €5)]
can be constructed as follows

gun(x) = g(eu(¥), e.(y)), m(y)=x, xeM, (2.12)

8.5(P) = g(ea(p), es(P)), peP, (2.13)

w®(u,)=u’, u, =u’es(p)+ute,(p)e T,P. (2.14)
Observe that

8aa(p)=0, peP, (2.15)
owing to the orthogonality of e,(p) and e;(p). For ne N we have pne P for pe P, and

ea(pn)=A(n ") e (p), (2.16)
and

g.s(pn)=A(n" )L A(n™ )5 2ap(P), (2.17)
where A(n)2 is the matrix of the adjoint representation

Ad(n)e, = A(n)2 &, (2.18)

The scalar fields g, satisfy the constraint of Ad(H)—invariance, infinitesimally

gav(P)CzB+gBy(P)Cza=0, PEP, (219)
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which, owing to the assumed connectedness of H, is also sufficient for H-invariance
on an integral level.

We end this section with calculation of coefficients I'§y of the Levi—Civita connec-
tion V of g. We introduce the following notation

Vaes =T 4pec, [asc =8col A, 8as = 8(€a, €8) = (8u1» ap)s (2.20)
[ea, es]=fanec Jasc= gCDfﬁB-
Since e, (p) are tangent to P, we get (compare [12])
s a=a,
wAP)= {—Ffp(p), o=d (2:21)

where F = Dw is the curvature two-form of the connection w. The coeflicients I 45 ¢
of the Levi-Civita connection can be found from the general formula

L agc = 3ea(gsc) +ep(8ac) — €c(8an) +i(fanc +feans —faca) (2.22)
Because of G-invariance of g,p, the fields e, are Killing vector fields for gap:
€.(848) = faa.B T fapA- (2.23)
Since e, are invariant and e, are fundamental, we have f,, =0, and therefore
e,(g,,)=0. (2.24)
It is convenient to introduce the notation
€,(8ap) = Dy8ap, (2.25)
« = _F°, (2.26)

also outside P, although it is only on P that D,g,s is the covariant derivative (with
respect to w) of the cross-section g,g, and F7, is the curvature two-form of w. Taking
into account the formulae above we find

Faﬂ,v = %(faﬁ,v —fya,B +f37,a)

F"B-/—'- = _FalL,B = —Fuﬂl,ﬂ = _%D;LgaB (2 27)

— = =1
Fay.,v - Fu_a,u - _rpw,a - ZF‘LV,CI

[,. . = {the Christoffel symbols of g,, on M}.

3. Geodesics in G-Universe

Consider a geodesic y: t > y(1) in E. Since g,p is G-invariant, it follows that for each
a € G the path ya: t-> y(f)a is a geodesic too. Observe that both y and ya have the
same projection 7(y)= w(ya) on M, and it is this projection which an observer living
on M, and blind to extra dimensions, sees. He does not distinguish between the
individual elements of the whole bundle [y]={vya: a € G} of geodesics with the same
projection on M. Our aim in this section is to identify the set of data which is adequate
for a description of the projected motion i.e. the set of quantities which characterise
the equivalence class [y] rather than one of its representativest. In the well known

t The idea of considering the equivalence class [y] was brought to author’s attention by M Dubois-Violette.
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case of the Kaluza-Klein theory on a principal bundle (E = P) this problem does not
cause any difficulty since through any point p e = '(7(y(t))) there passes exactly one
representative of the class [y]. As we will see below this is not the case in general (i.e.
when y(t)€ E > P), in which case a much subtler analysis is necessary. Needless to
say the discussion below covers the principal bundle case (see [2, 4, 5, 6]) including
also the Higgs charges responsible for interaction with Jordan-Thierry fields.

Consider a class [y]={ya: a € G} of geodesics in E, and let x,= 7(y(,)) for some
fixed t,. Let pe P be a point in P above x,, 7(p) =x,. Given ye[vy], let

y(O)=z()+ (1) 3.1

be the (orthogonal) decomposition of the vector y(¢), tangent to vy at ¢, into its horizontal
z(t)=z*(t)e,(y(1)), and vertical v(f)=v*(t)e.(y(t)) components. Owing to G-
invariance of vector fields e, it follows that the components z*(r) are the same for all
members of the equivalence class [y]; in fact z#(t) are the components of the vector
tangent to the projection [ y]< M. We now analyse the information contained in the
vertical component v(t,).

Given ye[y] we can find a € G such that pa = y(t,) (see figure 4). Of course such
an a is unique only up to an element h from the isotropy group H of p. Choosing
one a € G with the above property we define w(p)e T,(E) by

w(p)=1v(t)a”". (3.2)

4
+

X

Figure 4. Here P is drawn differently from figure 1 to stress the fact that, in general, a
geodesic in E intersects P only once, this is because dim P <dim E. Observe that angles
between y and the Killing vectors are constants of motion.

Now w(p) is vertical and can be identified with a vector n(p) in the vector spaces &,
7(p) = w(p)ea, (3.3)
where

w(p)=w(p)e.(p). (34
The vector n(p) depends both, on a choice of ye[y], and ae G. If vy is replaced by
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v'=9b, be G, and a is replaced by a’ satisfying pa’ = y'(t,), then
=waba'"', (3.5

t —1

w'=v'a’” =vba

—1

and, since pa’ = y'(1,) = y(t,)b = pab, it follows that aba'™' = he H, and consequently

n'=Ad(h)n, he H. (3.6)

It follows that the class [y] determines an n € & up to a transformation Ad(h), he H.
Corresponding to the decomposition & =¥ +Z of ¥, we decompose 7 into

n=q+A, qged, re & 3.7

Then, because of (2.51), we find that the %-component g of n is Ad(H) invariant, and
therefore q = (q“) does not depend on the choice of vy in the class and of the connecting
element a.

The above considerations give the following result: the class [y] of geodesics
determines at p € P two quantities: a vector g(p) =(q%(p)) e ¥, and an orbit [A(p)]=
[A%(p)le £/Ad(H) of H acting on £ by the restriction of the adjoint representation.
Now, suppose p is replaced by pn, ne N. It is easy to see that then

q(pn)=Ad(n"Hq(p), A(pn)=Ad(n"HA(n), (3.8)

the transformations of g and [A ] being dependent only on the class [n] of nin K = N|H.
Therefore g(p), considered as a vector g(x,) = p - q(p) in the fibre of the vector bundle
associated to P via the adjoint representation of K on ¥, is nothing but a coloured
charge, at x,, of the particle described by the geodesic class [y]f. Similarly [A(p)] can
be considered as a coordinate of the point [A](x,) = p- [A(p)] in the nonlinear fibre of
the associated bundle P Xy (¥/Ad(H)). The charge [A], taking values in the orbit
manifold rather than in a vector space, describes the slope of [y] with respect to P. It
is straightforward to show that, conversely, the set of data consisting of z*(x,), q(xo)
and [A(x,)] determines geodesic class [y], with xo€ 7[y], uniquely. Thus the initial
data x*(1,), ¥*(to), q°(to), and [A°(t)] determine x*(¢), q(¢), and [A(#)], at least in a
neighbourhood of ¢,.

4. Equations of motion for a particle carrying coloured and higgsonic charges

According to the discussion given in § 3 the adequate set of initial data describing the
motion of a particle in external fields, Aﬁ, 8.» Bap cOMsists of x§, X§, go, and [Ao],
where g, and [A,] are elements of the associated bundles P X ¥ and P Xk (£/Ad(H)).
It remains only to find differential equations governing the time evolution of x*, g,
and [A]. Whereas the differential equations for x* and q can be derived rather easily,
it is much harder to get one for [A ] —the reason being that [A ] takes values in a manifold
rather than in a vector space.

Let [y] be a geodesic class as discussed in § 3, and let x*(¢), q(), and A(?) describe
the projection of [y] on M and the time evolution of g and A. Our strategy for deriving
differential equations for x*, g, and A is as follows

(1) choose t,, xo=(x"(1)), and poe P with 7(po)= x,),

+ To make contact with [4, 6], where Wong equations on a principal bundle are discussed and the charge
takes values in * rather than in ¥ observe that g;; gives us an (x-dependent) isomorphism between ¥
and X*.
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(2) choose a representative y € [y] such that y(f)=p,

(3) choose a convenient gauge (i.e. a local section of P)

(4) choose a convenient connecting function a(f)

(5) find the relation between x*, g%, A%, and their rates of change (time derivatives)
at t,, for the particular choices made before

(6) interpret the resulting equations in an invariant way.
The first two choices being made let us discuss the choice (3) of a convenient gauge.
We define p(t) to be the unique horizontal curve in P with the same projection x*(t)
as y(1), and such that p(t,) = p,. We take o: x> o(x) to be any local cross-section of
P which contains p(f). Such a cross-section o containing a given horizontal curve
always exists since curvature gives no local obstructions along a one-dimensional
manifold. This choice of gauge can be described also in terms of the gauge potential:

Ad(x(t)) dx*/dt=0, 4.1)

i.e. A, (x(1)), vanishes on vectors tangent to x(?).
Let now a(t) be a smooth function ¢ - a(t)€ G connecting p(t) with y(¢)t

p(Ha(t)= (1), a(to)=e. 4.2)

Differentiating with respect to t, and taking into account the decomposition (3.1) we
find that

o(t)={(y(1),
where
{(t)=(d/ds)a""(a(s)|s- = a " d(1).
From (3.2) we then get
w(t)=n()(p(1)),
where
m(t)=(d/ds)a(s)a”"(1)],= = da™'(1).
If a(t) is replaced by a'(¢t) = h(t)a(t), h(t)€ H, then
n)=hnh™' +hh™",

It follows that there is a unique function t - h(t) such that ni(¢t)e & for all t. Indeed,
h(t) must be a solution of the equation

’ihil = _hnl,%h‘ly

where 7, 4 is the #-component of n,€ =3+, and such a solution, satisfying
h(t,) = e, is unique. In other words: there exists a unique connecting function a(r)
with the property that

(d/ds)a(s)a ‘()]s =n()e ¥ 4.3)

for all ¢
Having chosen a convenient gauge (4.1), and a canonical connecting function a(t)
defined by (4.3) we proceed to derive differential equations for x*, g%, and A°.

 To guarantee the existence of a smooth connecting function one uses local triviality of the fibration
G- H\G ([22, p 83)).
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Denoting by u” = (z*, v®) the components of the vector y tangent to v, the geodesic
equations are
du?/dt +Tpcu®uc =0.
Substituting the connection coefficients (2.20), and specifying A= u and A = a, we get
dz*/dt +T%,(x(1)2"2° + 8" F,, . (¥(1))z"0" —1D*gup(y(D)0"0” =0, 4.3y
do®/dt +g°°(D,gps)z"v® + g°°f,5.5(y(1))v"v° = 0. (4.9

Since y(t)= p(t)a(t), and taking into account the invariance properties of F},, and
8.5, We have

Fopa(y(1)0® = F,p o (p(Da())(w(t)a(1)*
= FupaP(OYW (1) = F 1y a(x(10)0°(0),
the last term being expressed in the gauge . Similarly
D*g.s(¥(1))0°0° = D"g ss(x(1))q*(1)g°(1) + D" gup ((INA“(DA®(1).

Consequently, with z* = x*, (4.3) can be written, in the canonical gauge o defined by
4.1) as

Dx*/dt= % +T% 5"5" = g*°g s Fo %"q° + A D" g 45)q° q° + A D" gun)L “TA ). (4.5)

Notice that the last term depends on the class [A] of A only—this owing to the
Ad(H)-invariance of g,, (2.19) and, consequently, D, g.

The equation (4.5) is a generalised Kerner—-Wong equation describing the trajectory
of a particle in gravitational, gauge, and scalar fields g,,, Aﬁ, and g.5. We proceed
now to find the time evolution of the charges g and A from geodesic equations (4.4).
The relation between v” appearing in (4.4) and n“ =¢“ +A” is given implicitly by
(3.2)—~(3.4), but what we need is an explicit formula. To derive such a formula observe

that the components v* of v with respect to e,(y(?)) are the same as the components
—~1

of w=wva ' with respect to e,(y(t))a”'. Now

ea(y(t)a "' (1) = AL(Nea(p(1)), (4.6)
where A%(1) are the elements of the matrix of the adjoint representation of G:

Ad(a(t))e; = Ai(t)e, +Af?(t)55,. “@.7)
Therefore we obtain

(1) = Ag(1)v* (1) (4.8)
Differentiating (4.7) with respect to ¢, and taking into account (4.3), we get

A5 =(f3s A3 +3ARALY, (49)
and therefore

7% = A50P + A50° = Ag0P + [ A5 070", (4.10)

The first term of (4.9) gives no contribution to (4.10) because of the antisymmetry of
fys We could now use the geodesic equations (4.4) to get the evolution equation for
n“ if not for the second term in (4.10) containing the unknown functions Ag which
cannot be eliminated. At this place the following observation should be made: we

know that x*(f), ¥*(1), ¢°(t) and [A°(t)] determine the trajectory, true, but we have
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no a priori guarantee that the evolution of g“(t) and [A“(f)] can be described by
first-order differential equations. In fact, often, after projecting down of a differential
equation, one gets an integrodifferential equation instead. Fortunately the difficulty
we met can be dealed with as follows. First of all notice that n* are the components
of a vector tangent to ¥ at n =(n*). Passing to the quotient ¥/ Ad(H) all directions
obtained by infinitesimal transformations of n by elements of H become equivalent.
In other words 7% and 7 +[x, n], x€ #, determine the same vector [7j] tangent to
¥/Ad(H) at [n]. Now, the second term of (4.10) is precisely of the form [y, ]
for x = Ajv”es. Therefore

[1]= A55%,

and taking into account the covariance of g,z and f,z 5 We get at p(t,) the following
equation

[1°1+8°°D,ugesx"[n°1+ g Cyg s[n "1 m"1=0. 4.11)

Since the path p(¢) is horizontal (see also (4.1)), the derivative coincides with the
covariant derivative D7/dt. Specifying « = d, and introducing ¢; = gs59”, we get from
(4.6)

Dqa/dt = Cas:q°q°+ Can [A"TA]=0, (4.12)

where the last term depends on the equivalence class of A only because of (2.5i) and
owing to the Ad(H)-invariance of g,s. One has to bear in mind that the indices are
being lowered and raised with the help of g,;—the reason why C,4, are, in general,
not antisymmetric with respect to the last two indices (unless g,z is Ad(G)-invariant).
Finally, for a = a, (4.11) gives us

D[AJ/dt = Cap JAPTAC], (4.13)

with understanding that the equation tells us that both sides describe the same element
of T (Z/Ad(H)).

The equations (4.5), (4.12) and (4.13) constitute the final set of equations of motion
for a particle carrying a coloured charge q; and a higgsonic charge [A,].

5. Summary and example

To every homogeneous space G/H there corresponds Lie algebra decomposition
G =3+ +, where J consists of all Ad(H) singlets in 9/ and is the Lie algebra
of the group K := N(H)/H, N(H) being the normaliser of H in G.

We considered a multidimensional universe E which is (locally) a product E =
M x(G/H). A G-invariant metric in E can be described in terms of fields on M. We
get in this way gravity g,,(x), gauge field AZ(x) (the indices 4, b, ¢ ... are those of
J), and two kinds of scalar fields: non-singular gg(x), and non-singular Ad(H)-
invariant g,,(x) (the indices a, b, ¢, . .. are those of ¥).

We studied geodesics y(¢) in E and their projections x(f) in M. We proved that
a complete description of the projected trajectory is given by the equations

Dx,/dt=qsFl%" + 34°q"D.(gs) + 3A“A°D,gu (5.1)

Non-Abelian Type I Type I1
Lorentz force Higgs force Higgs force
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Dqs/dt=Cu:4°q°  +  Cap A€ (5.2)

Type I charge Type II charge
non-conservation non-conservation

DA,/dt = Cu A°AC (5.3)

Higgs charge
non-conservation

The indices are lowered and raised with g,,,, 845, 8., and their inverses. The covariant
derivatives are gauge covariant derivatives, except for the left-hand side of (5.1) which
is gravitational (Levi—-Civita). All charged fields are in the adjoint representation of
K =N(H)/H in 4 Thus, for example

da, .
DA,/dt = ?—x“A;c&a”Ah, (5.4)

C.. being the structure constants of G. The g;(A“) are essentially cosines of the angles
between the J-Killing vectors (#-Killing vectors) and the geodesic in question.
Whereas the g, describe the colour charge (more precisely: charge/mass ratio) of the
particle and couple it to the gauge field and to the Higgs field of type I, we have also
found the new charges A, which have geometric interpretation of giving the slope of
the geodesic with respect to the submanifold P of E on which the principal K-bundle
lives (see figure 4). We call A, the Higgs charge since it interacts with the scalar field
g.» only. The Higgs charge takes values in £ or, rather, in the quotient space ¥/ Ad(H)
of H-orbits in £). Indeed, the couplings of A in (5.1) and (5.2) are of such a nature
that they allow us to determine A only modulo an arbitrary Ad( H) transformation. This
essentially nonlinear nature of the Higgs charge was shown to follow from the fact that
the non-trivial isotropy group H rotates a geodesic vy into yh, with y and yh intersecting
in E, but having both the same projection onto M.

The following commentaries deal with special cases of (5.1)—(5.2):

(i) If gz is Ad(K)-invariant, in particular if it is the Killing metric of K, then the
type I Higgs force and the type I colour charge non-conservation term disappear.

(i) If G/N(H) is isotropy irreducible then the type Il colour charge non-
conservation term vanishes.

(iii) If g, is Ad(K)-invariant then the type II Higgs force vanishes.

(iv) If G/ N(H)is a symmetric space then the Higgs charge non-conservation term
vanishes.

Consider now the following example, which in a simple way illustrates general
features of the theory.

Example.
G =U(Q2, H)=S0(5)
H =U(l,H)=SU(2)=S0(3).

We find N(H)=U(1, H) x U(1, H),

K = N(H)/H = U(1, H).
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The internal space S= G/ H is U(2,H)/U(1,H) = S’. L=G/N=U(2,H)/U(1,H) x
U(1,H) =HP' which is a symmetric space. Therefore [, £]= & and thus C:,=0. The
Lie algebra decomposition ¢ =3 +¥# + £ can be written explicitly as

(-6 0-6 D67

¢ = ¥ + X + 2

i

where x, y, ze H are quaternions, x and y being pure imaginary. The charge g can be
written as q=g“e;, e; being the three imaginary quaternionic units, whereas A e H.
The adjoint representations of H and K on £ =H are

Ad(a)z = az, ac K=U(l,H),
ad(k)z = kz, ke =u(l,H),
Ad(a)z = za*, ae H=U(1,H),
ad(h)z = —zh, he #=u(l,H).

Since the action of H on £ is irreducible, any two Ad(H)-invariant scalar products
are proportional. Thus we must have

Gab = POty (5.5)

It is convenient to introduce A = ¢A. Instead of discussing a general ga;—the metric
on our gauge group, let us consider a particular case of gz = 8 ss—the Killing metric.
The equations (5.1)—(5.3) read then

Dx,./dt =(q-F,.,)%" +5,6A°/ ¢, (5.6)

dg/dt +qxA =0, 5.7

dA/dt +AA=0, (5.8)
where

A =(dx"*/dnA,(x(1)), (5.9)

and the term AA in (5.8) should be understood as the quaternionic product of A and
A. From (5.8) it follows that A?=A*A = constant. The nonlinear Higgs charge [A]
takes values in #/Ad(H) = R,—the half-line, and indeed it is only A? that enters (5.6),
all other information about the direction of A is lost. Thus the equation (5.8) carries
no information whatsoever except that A” is a constant of motion. The second term
in (5.6) generalises the well known classical Wong equation [3].
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