BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES Série des sciences physiques et astron.—Vol. XXVII, No. 2, 1979

THEORETICAL PHYSICS
Phys. Abstr. Subj. Class.: 02.40

Electromagnetic Permeability of the Vacuum and Light-Cone Structure*)

by

Arkadiusz Z. JADCZYK

Presented by J. RZEWUSKI on October 16, 1978

Summary. It is shown that to give a constitutive tensor for the vacuum is to give a conformal structure to space-time.

To formulate laws of electromagnetism one first has to specify a constitutive tensor $\chi_{\mu\nu}^{z\mu}$. Once χ is specified, Maxwell's equation reads: dF=0, and d*F=j, where

$$(*F)_{\mu\nu} = \chi^{\alpha\beta}_{\mu\nu} F_{\alpha\gamma}$$
.

We shall assume that, in a vacuum, the *-operator satisfies

(i)
$$*w \wedge u = w \wedge *u, \quad (u, w - \text{two-forms})$$

$$(ii) *^2 = -I.$$

Under these assumptions we shall prove that to give such a "*" is the same as to give a light-cone structure.

DEFINITION. Let E be a 4-dimensional real vector space, and let $(w_i)_{i=1, 2, 3}$ be a system of linearly independent bivectors $w_i \in \Lambda^2$ (E), such type $w_i \wedge w_j = 0$ (i, j = 1, 2, 3). The system (w_i) is said to be of type I if and only if there exists $0 \neq e \in E$, such that $w \wedge w_i = 0$. Otherwise (w_i) is said to be of type II.

LEMMA 1. A system (w_i) is of type I (resp. type II) if and only if there exists a basis $(e_n)_{n=0,1,2,3}$ in E such that

$$(i) w_i = w_0 \wedge e_i$$

resp., (ii)
$$w_i = \frac{\epsilon}{2} \ \epsilon_{i,jk} \ e_j \wedge e_k$$
, where $\epsilon = \pm 1$ or -1 .

Proof. Clearly (i) implies that (w_i) is of type I. Conversely, if (w_i) is of type I, and $e_0 \wedge w_i = 0$, then $w_i = w_0 \wedge e_i$, and $(e_u)_{u=0,\dots,3}$ is a basis in E. Suppose now that

Author's address: Institute of Theoretical Physics, Wrocław University, Cybulskiego 36, 50-205 Wrocław

^{*)} Supported by the Humboldt Foundation.

(ii) is satisfied. If $e \wedge w_i = 0$, then e = 0, and so (w_i) is of type II. Conversely, let (w_i) be of type II. Since $w_1 \wedge w_2 = 0$, there exist linearly independent $f_i \in E$, such that $w_1 = f_2 \wedge f_3$, and $w_2 = f_3 \wedge f_1$. Let f_0 be any completion of (f_i) to a basis in E. Since $w_3 \wedge w_1 = 0$, so w_3 is of the form $w_3 = (af_2 + bf_3) \wedge \alpha^n f_n$. The coefficient a can not vanish, otherwise $f_3 \wedge w_i = 0$, contrary to the assumption. But $0 = w_2 \wedge w_3 = a\alpha^0 f_3 \wedge f_1 \wedge f_2 \wedge f_0$, and so $\alpha^0 = 0$. It follows that w_3 is of the form $w_3 = af_1 \wedge f_2 + bf_1 \wedge f_3 + f_2 \wedge f_3$, $a \neq 0$. Define

$$e_0 = f_0$$
, $e_1 = |a|^{-1/2} (af_1 - cf_3)$
 $e_2 = |a|^{-1/2} (af_2 + bf_3)$, $e_3 = |a|^{-1/2} f_3$,

then

$$w_i = \frac{\epsilon}{2} \epsilon_{ijk} e_j \wedge e_k$$
, where $\epsilon = \text{sgn}(a)$.

LEMMA 2. Let $(w_i, \tilde{w}_j)_{i, j=1, 2, 3}$ be a basis in $\Lambda^2(E)$ such that

$$(i) w_1 \wedge w_j = 0,$$

$$\tilde{w}_i \wedge \hat{w}_j = 0 ,$$

(iii)
$$w_i \wedge \tilde{w}_i = \delta_{i,i} W$$
, for some $0 \neq W \varepsilon A^4(E)$.

Then exactly one of the systems (w_i) , $(\tilde{w_i})$ is of type II. If, say, (w_i) is of type II, then there exists a basis (e_u) in E such that

$$\varepsilon w_i = \frac{1}{2} \ \varepsilon_{ijk} \ e_j \wedge e_k \,,$$

(aa)
$$\varepsilon \widetilde{w}_i = e_0 \wedge e_i.$$

Proof. Suppose both (w_i) , and $(\tilde{w_i})$ are of type I. There are bases (e_μ) , and (f_μ) such that $w_i = e_0 \wedge e_i$, and $\tilde{w_i} = f_0 \wedge f_i$. Let $f_\mu = a_\mu^\nu e_\nu$. Then $\tilde{w_i} = a_0^\mu a_i^\nu e_\mu \wedge e_\nu$, and so $\delta_{ij} W = w_i \wedge \tilde{w_j} = a_0^\mu a_i^j e_0 \wedge e_i \wedge e_k \wedge e_l$. By multiplying by a_0^i , we get $a_0^j = 0$, and so

$$\tilde{w}_i = a_0^0 \ a_i^v \ e_0 \wedge e_v = a_0^0 \ a_i^j \ e_0 \wedge e_j = a_0^0 \ a_i^j \ w_j$$

contrary to the assumption of linear independence. We can therefore assume that (w_i) is of type II, and let (e_μ) be a basis for which (a) holds. Now, since $\tilde{w}_1 \wedge w_2 = 0$, \tilde{w}_1 is of the form $w_1 = (Ae_1 + Be_3) \wedge a^\mu e_\mu$. We have $A \neq 0$, otherwise $w_1 \wedge \tilde{w}_1 = 0$. We also have $a^0 \neq 0$, otherwise \tilde{w}_1 would be a linear combination of w_i . Now, $0 = \tilde{w}_1 \wedge w_3 = B$ $a^0 e_3 \wedge e_0 \wedge e_1 \wedge e_2$, and so B = 0. It follows that \tilde{w}_1 is of the form $\tilde{w}_1 = a_1^\mu e_\mu \wedge e_1$. More generally, $w_i = a_i^\mu e_\mu \wedge e_i$. But now $\tilde{w}_i \wedge \tilde{w}_j = 0$ gives

$$a_i^{\mu} a_j^{\nu} e_{\mu} \wedge e_i \wedge e_{\nu} \wedge e_j = 0,$$

or

$$\varepsilon_{\mu i \nu j} a_i^{\mu} a_j^{\nu} = 0$$
.

It follows that any three different indices i, j, k: $a_i^0 a_j^k = a_i^k a_i^0$, or

$$a_j^k/a_j^0=a_i^k/a_i^0=a^k.$$

We now have

$$a_i^0 (a^k e_k + e_0) \wedge e_i = a_i^0 \begin{pmatrix} a_i^k \\ a_i^0 + e_k + e_0 \end{pmatrix} \wedge e_i = \tilde{w}_i.$$

Replacing e_0 by $e_0 + a^k e_k$, we get $\tilde{w}_i = a_i^0 e_0 \wedge e_i$. Now, since $w_i \wedge \tilde{w}_i = w_j \wedge \tilde{w}_j$, we get $a_i^0 = a_i^{0-D} a$. Replacing e_0 by $\varepsilon a e_0$ we finally get (aa).

Lemma 3. Let V be a 2N-dimensional real vector space with a nondegenerate symmetric bilinear form (u,v). Let J be a symmetric linear operator in V with $J^2 = -I$. There exist N vectors $w_1, ..., w_N$ in V such that

(i)
$$(w_i, w_j) = 0$$
 $(e_i = Jw_j) = \delta_{ij}$ $i, j = 1, ..., n$.

The system $\{w_i, Jw_i\}$ is a basis for V.

Proof. Easy and standard.

Theorem 1. Let E be a 4-dimensional real vector space, and let $*: w \mapsto *w$ be a linear operator in $A^2(E)$ such that

(i)
$$*w \wedge u = w \wedge *u, \quad u, w \in \Lambda^2(E)$$

$$(ii) ** = -I.$$

There exists a basis (e_u) in E such that

$$*(e_{\alpha} \wedge e_{\beta}) = \frac{1}{2} \, \varepsilon_{\alpha\beta\sigma\rho} \, \eta^{\sigma\mu} \, \eta^{\rho\nu} \, e_{\mu} \wedge e_{\nu} \,,$$

where $\eta = \text{diag}(1, -1, -1, -1)$.

Proof. Fix arbitrary $0 \neq W \in \Lambda^+(E)$, and define a nondegenerate symmetric bilinear form (u, v) in $\Lambda^2(E)$ by $u \wedge v = (u, v)$ W. Now, with J = *, the assumptions of Lemma 3 are satisfied, and so there exist bivectors w_i (i = 1, 2, 3) such that $w_i \wedge w_j = w_i \wedge *w_j = 0$, and $w_i \wedge *w_j = \delta_{i,j} W$. With $\widetilde{w}_i = *w_i$, the assumptions of Lemma 2 are satisfied. It follows that either (w_i) or $(*w_i)$ is of type II. If $(*w_i)$ is of type II, then there exists a basis (e_u) such that

$$w_i = e_0 \wedge e_i, \quad *w_i = \frac{1}{2} \ \epsilon_{ijk} \ e_j \wedge e_k,$$

and so, Theorem 1 holds. If, on the other hand, (w_i) is of type II, then the basis $(-e_0, e_i)$ satisfies the desired relation.

DEFINITION. A basis (e_n) in E satisfying relation (*) in Theorem 1 will be called a *-basis.

THEOREM 2. Any two * bases (e_n) and (\tilde{e}_n) are related by a transformation of the form $\tilde{e}_n = \lambda e_n L_n^v$,

where ${}^{t}L\eta L = \eta$, $\det(L) = +1$, and $\lambda > 0$. L and λ are uniquely determined by these conditions. Conversely, any such transformation transforms *-bases into *-bases.

Proof. Assume both e_{μ} , and \tilde{e}_{μ} satisfy (*), and let $\tilde{e}_{\mu} = e_{\nu} A_{\mu}^{\nu}$. This leads immediately to

det (A)
$$\varepsilon_{\kappa\lambda\mu\nu} = B^{\alpha}_{\mu} B^{\beta}_{\lambda} \varepsilon_{\mu\nu\alpha\beta}$$
,

where $B = \eta^{-1/t} A \eta A$. This implies det (A) > 0, $B = \det(A)^{1/2} I$. It follows that ${}^t A \eta A = \det(A)^{1/2} \eta$, or with $\lambda = \det(A)^{-1/4}$, A = |L|, ${}^t L \eta L = \eta$, and det (L) = 1. The rest of the theorem is obvious.

Corollary. Given a *-operator as in Theorem 1, the set of all *-bases is a transitive homogeneous space for the proper conformal group CO (1, 3).

It follows from the above corollary that a constitutive tensor of the vacuum equips space-time with a cone at each of its points. Or, equivalently, determines a Riemannian metric up to a scaling. This result has no analogue in more than four dimensions.

This note is a solution of a problem raised in a discussion with Professors R. Haag, D. Kastler and J. M. Singer.

А. Язчик, Электромагнитная проницаемость вакуума и структура световых конусов

Содержание. В работе доказано, что определение комформной структуры пространствавремени эксвивалентно определению тензора электромагнитной проинцаемости вакуума.