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Symmetry of Einstein -Yang - Mills systems 
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Institute of Theoretical Physics, University of Wroclaw 
50-205 Wroclaw, Cybulskiego 36, POland 

Abstract. The following topics are discussed: G-invariant Riemannian metrics and 
principal conllections, dimensional reduction of Einstein and Yang-Mills systems, 
curvarure of coset spaces, dimensional reduction of spinors, geometrical illlerpreta­
tion of color and Higgs charges. 

I. INTRODUCTION 

It is interesting to assume that space-time points are endowed with some 

internal structure. In modern language one assumes that our 4-dimensional 
space-time M is a base of a fiber bundle (E, 7r, M), E is a «multidimensional 
Universe» (dim E 4 + N), and 7r : E -+ M is a projection map identifying points 
in E which we do not discriminate. The idea that the events we nonnally perceive 
are only shadows, or projections, of things which take place in much more dimen­

sions can be attributed to Plato. The fact that (under normal conditions) we are 
perfectly blind to the extra dimensions is naturally expressed by assuming that the 
fibers of E are homogeneous spaces. In this way certain symmetry group G is 
introduced, and it is tempting to connect this group with internal symmetry 
groups which are so helpful for classifying of elementary particles multiplets. An 
example of this type of a structure is given by a gauge theory when formulated in 
terms of fiber bundles. One starts there with a principal bundle 7r : P -+ J1, and the 
fibers of P are group manifolds. In electromagnetism (G U( I» the extra dimen-
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sian is related to an unobservable phase of a wave function. For non -Abelian gauge 
fields one still talks of a non -observable. non -integrable, phase factor [1], but 

it is no longer connected with representing of quantum mechanical states by 
rays (I-dimensional subspaces) rather than vectors. The attempts of introduc­

ing quaternionic Hilbert spaces, which are natural for G SU(2), produced 

so far 110 workable model, maybe because of the rigidity of our thinking. In 

this connection see [2]. [31. Although principal bundles proved to be an indispen­
sable concept in discussing gauge fields and their interaction with matter, many 

people felt uneasy about an ad hoc introduction of such a very special geometrical 

structure. One way of a more general, and more natural, introducing of a fib­
ration is by a dynamical mechanism called a «spontaneous compactification» 

(see e.g. [4]. also [5] and references there). Exact geometrical meaning of this 

mechanism is not yet clear, and 1 shall focus here on a simpler idea which relates 

the fibration of E to a global action of some internal symmetry group G. A 

dynamical origin of G and its action 011 E is left open here. Keeping in mind 

the obvious shortcomings of our model it is nevertheless worthwhile to study 

it as a straightforward generalization of the principal bundle structure which 
proved to be already useful. Before we go into the details let us give first some 

relevant references. A unification of gravitation and electromagnetism (U (I) 
gauge field) based on the idea of a five-dimensional Universe was worked out 

by Kaluza [6] and Klein [7]. A possibility of a non-Abelian generalization of 
this idea was discussed several times [8, 9, 10] and its full geometrical and dyna­
mical content has been given in [II, 12, 13, 14]. In all these papers it was always 

assumed that E is a principal bundle, i.e. that the internal spaces are group 
manifolds. The only exception is the Souriau paper [8], where the sphere S2 

was proposed as a model for an internal space related to the isospin group 

G SU(2). A general framework of G -invariant dimensional reduction desc­

ribed below has been given by Coq uereaux and J adczy k r I 5]. 

For the convenience of the reader we include a selection of references (Ref. 

[35 - 48]) where a broader spectrum of problems and approaches to gauge fields 

and Kaluza -Klein theories is discussed. 

2. MULTIDIMENSIONAL UNIVERSE AND ITS BUNDLE STRUCTURE 

2.1. Assumptions and notation 

As a mathematical model for a multidimensional Universe we take a manifold 
E (the Universe) on which a (global symmetry) group G acts as a group of trans­

formations: We assume that 

i) G is a compact Lie group 
ii) G acts effectively on E from the right 
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iii) there is only one stratum (one orbit type). 
We let Gy = {a E G :YG .J'} to denote the isotropy group at y, and G(y) 

(ya : a E G} to denote the orbit of G through y. Let M = E/G be the space 
of orbits. One can consider M as a quotient of E by the following equivalence 
relation: y ~ y' in E if and only if y and y' are connected by some symmetry 

transformation from G i.e. y' ya, a E G. The points of M are equivalence 
classes of this relation i.e. the orbits of G. There is a canonical projection 
11' : E -+ M which sends every y E E into the equivalence class to which it belongs, 
i.e. into its orbit. By iii) all orbits are of the same type i.e. all the isotropy groups 
G)' are conjugated to a standard one, say, H. 

2.2. Examples 

a) Consider the natural action of the rotation group SO(3) on E IR3. After 
removing the origin 0 E IR3 we find that all the isotropy groups are conju­

gated to SO(2) the rotation group about z-axis. The space of orbits 
Mis IR+. 

b) When we take G = 0(2) acting on E = IR 3 we have to remove the z-axis 
to get one stratum. The isotropy groups are then all trivial. The space of 
orbits is the open half-plane H IR+ x IR. 

c) Take E SU(2) ::::=. S3 and G U(l) c SU(2). Then all orbits are of the 
same type (all the stability groups are trivial) and M SU(2)/U(l) ::::=.S2. 

Thus E is a fiber bundle with base S2 and fibe~ SI. 

d) Let E = U(2; H) and G = U( I; H) acting on E by 

(
a b) (q*aq , q *b ) U(l,H) 3q: -+ • 
cd q*cq ,q*d 

Here again all the stability groups are trivial, the space of orbits L 7 is topologi­
cally seven-sphere but carrying one of the exotic differentiable structures disco­
vered by Milnor {16], {17]. 

2.3. Bundle structure of E 

The triple (E, 11', M) defined in 2.1 is a fibration but to make it into a fiber 
bundle one has to distinguish a class of local product representations (trivializa­
tions), and it is not obvious how to decide this question. We will see that (E, 11',M) 

can be considered as an associated bundle with a typical fibre H \ G. The construc­
tion is considered standard in the mathematical literature (see e.g. {I 8]) but, so 
far, rarely used by physicists. One starts with observation that the isotropy groups 

along the orbit are mutually conjugated: Gyu a IGya. Let J' EE be arbitrary. 
By the assumption (iii) there exists a E G such that Gy aHa-I. But then G yo 

Jf. Thus on each orbit x EM the set Px of all points having H as the isotropy 
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group is non-empty. We have 

P {.1' EE: Gy 

and 1T: E ~ M restricts to a projection 1T : P ~ M. What is the structure of the 
fibers Px of P? To answer this question let)', E Px ' Since y and y' are on the 
same orbit there is an a E G such that y' = ya. 

But then H = G G = a-I G a = a-I Ha The set of all a E G with this y ya y . 

property is known as the normalizer NUl) of H in G: 

N(H) ={a E G :aH =Ha}, 

and is the biggest subgroup of G in which H is normal. Thus any two points of 
a fiber of P are related by an element of N(H). The normalizer N(H) acts on 
the fibers of P transitively, but the action is not effective - the subgroup H 

of N(H) acts trivially on P. Since H is nonnal in N(H), the quotient K =.N(H) I H 

is a group. The action of K on the fibers of P is transitive and free. To conclude 
from this that (P, 1T,M, K) is a principal bundle, with structure group K, one 

has to know that P admits local cross-section. Existence of such cross-sections 
follows from the so-caIIed «slice theorem» (see [18] and references there). 

2.4. K = N (H) I H as the automorphism group of H \ G 

A geometrical structure of the homogeneous space H \ G is determined by 
the action of G on it. Thus it is natural to define an automorphism of H \ G 

as a map 0: : H \ G ..... H \ G which commutes with this action 

o:(za)=o:(z)a, ZEH\G, aEG. 

The set of all automorphisms is a group under the composition. Let us show 
that this group is isomorphic with K. First of all, given n EN(H) define O:n by 

O:n ([a ]) [na ]. 

If [a] = [a'] then a' ha and na' nha =nhn-1na =h'na. Thus [a] [a'] 

implies [na] [na'] and so the map O:n is well defined. We also have O:n([a]b) = 

O:n([ab]) = [nab] = [na]b = O:n(a)b, therefore O:n is an automorphism. If n' 1m 
then O:n,([aj) [n'a] = rna] O:n([aj), and, conversely, if O:n' O:n then [n'] 

O:n,([e D = O:n([e]) = [n]. Thus n ..... O:n factorizes through H to a I - I map 
[n] ..... O:n' It remains to show that every automorphism 0: is of this fonn. Given 

0: let n E o:([e D. It is straightforward to show that n E N(H) and 0: = O:n what 
completes the proof. 

REMARK. The following remark is important for avoiding misunderstandings. 
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Of course a particular example of a homogeneous space ff \ G is the group G 

itself. It corresponds to JI {e i. But an automorphism of G as a homogeneous 

space is a different concept from that of an automorphism of G as a group. The 

first would require cx(ab) cx(a)b while the second cx(ab) = cx(a )cx(b). And it 
is clear that If = {e} implies N(Il) = G and thus K G while the group of all 
automorphisms of the group G may be different from G (for example 

Aut (U(1» = Z). 

2.S. Local product representations of E 

Let a : M ...... P be a local cross-section of the principal bundle P. Then a deter­
mines a local triviaIization ¢ : M x K ...... P of P by ¢(x, fa]) a(x) a, raj E N(ff) Iff. 

But ¢ can be naturally extended to a map ¢ : M x (ff \ G) ...... E, and it is easy to 

see that ¢ so extended is a local diffeomorphism. 

REMARKS. 

a) we use the word «local» to indicate that M is to be understood as an open 
U C M, E as 1I- 1(U) etc. 

b) H \ G denotes the space of right cosets [a J ffa on which G acts from the 
right. We write N(H) I ff with a vertical bar to indicate that, since H is 
normal in N(JI), left and right cosets of H in N(ff) coincide. 

c) E may be thought of as a bundle associated to P via the left action of K 

on H\G:[IlJ:[a] ...... [na], [njEN(H)IH. It is well known that a local 
cross-section of a principal bundle determines local product representa­
tion of every associated bundle. The map ¢ above is a particular example 
of such a representation. 

d) In good texts on fiber bundles (see e.g. [19, Ch. 16.14.7.2]) there is a 

warning that the structure group does not act on associated bundles. One 
may wonder how to reconcile this with the remark c) and action of G on 

E. The crucial point here is that the left action of the structure group K 

and the right action of the group G on If \ G commute. 

3. RIEMANNIAN GEOMETRY OF H \ G 

3.1. Lie algebra decomposition 

G is a compact Lie group and If is a closed subgroup of G. The Lie algebras 

of G and Hare G and H respectively. For technical reasons we assume H connect­

ed. Then Ad (H) invariance is the same as ad (H )-invariance. If one meets a case 

of H consisting of several components, then one can replace If \ G by its cover­

ing to reduce If to the connected component of the identity. Recall that N(H) 

is the normalizer of If in G and let N be the Lie algebra of NUl). Consider now 
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the following decompositions 

Then 

Let IIJ + L, with Ad (N) L C L, 

Let N H + K, with Ad (If) K C K, 

define S K + L. 

[H, K 1= 0, 

rK, K) C K, 

Ad (mS C S, 

S can be identified with the space tangent to H \ G at the origin, and K can be 

identified with the Lie algebra of K =. NUl) H. Moreover, we also have (for 

a proof see [15)) 

(3.1.1 ) K = \ t S: Ad (h) t t. II H}. 

The last property is very important. It tells us that K and L are orthogonal to 

each other with respect to all)' Ad (H) invariant scalar product on S. 

3.2. The canonical moving frame 

To each element v E G there corresponds a vector field 

fundamental vector field generated by v. It is defined by 

cI 
Z/,1') 

dt t=O 

It follows from this definition that 

(3.2.1 ) 

(we write Z,,u for (Rg)*Z) what implies 

L",J =ZI"."'I· 

on H \ G - the 

Let (E i) be a ba~is for the Lie algebra G. The basis is assumed to be adapted 

to the decomposition G = H + K + L, with Ei (15",150')' Ea E H, Eo- S. The 
fundamental vector fields on 11 \ G corresponding to -E j are denoted by I!j' Then 

[ci,cjl = ct,ck' 

where C~ arc the structure constants of G. At the origin 0 = [e I the vector fields 
II 

cc, corresponding to the isotropy group 11 all vanish and ec'(O) form a basis in 

T(H \ G). Thus c are linearly independent also in some open neighborhood o 0-

of the origin. We call (eo-) the Ui/lUllical 11/0 ping frame' for H \ G. It should be 
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observed, however, that Cc, may cease to vanish for y arbitrarily close to the 
origin (except for special directions generated by the action of N(lI)) , 

33, Invariant metrics 

If g (gap) is a G- invariant metric on (II \ G) then its restriction to TaU! \ G) 
= S is Ad (}f)-invariant. Conversely, every Ad (H)-invariant scalar product on 

S determines a G -invariant metric on H \ G, this owing to the transitivity of 

G -action, Now S decomposes into K + L with [H, K 1 = 0, and K 1 L. Therefore 

to give II \ GaG-invariant metric is to endow K and L with scalar products, the 
scalar product in L being Ad (H)-invariant and that in K arbitrary. 

REMARK. We know from (2.4) that on (ll \ G) acts not only G from the right 

but also N(H) from the left. There is, therefore, a subclass of G-invariant metrics 

on (H \ G) consisting of metrics which are also N(H)-invariant. It is easy to see 

that these metrics are described by scalar procuct on S which are also Ad (K)­

-invariant. The K -part of such a scalar product determines a biinvariant metric 

on the group K. A particular example is given by the restriction to S of a biinva­

riant metric of G. 

3.4. Curvature and Killing vectors 

The fundamental vector fields Z", v G are Killing vector fields for an invariant 
metric g. Thus H \ G admits a moving frame of Killing vectors. We consider fIrst 
a more general case of a metric g on space E admitting Killing vectors. If X, Yare 
vector fields, we denote by (X, Y) their scalar product given by the metric. Recan 

that X is a Killing vector if for all Y, Z 

(3.4.1) X(Y, Z) = ([X, Yl, Z) + (Y, [X, Z]), 

where X (Y, Z) denotes the derivative of the function (Y, Z) in the direction of X. 

Let V be the Levi-Civita connection of ( , ) i.e. 

(3.4.2) X(y, Z) = (Vx Y, Z) + (r, VxZ) (metricity) 

and 

(3.4.3) (zero torsion) 

Decompose V x Y into its symmetric and antisymmetric parts 

(3.4.4) V x Y = S(X, Yj + A (X, Y), 

withS(X, Y) S(Y,X)andA(X, Y)= A(Y.X). 

LEMMA 3.4.1. For any vector fields X, Y we have 
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IX,)']. 
2 

If X, Y, Z are Killing vectors then 

(3.4.6) 
I 

(S(X, y),Z) = - -{([Z, X], y) + (X, [Z, Y])}. 
2 

Proof The first statement follows from (3.4.3). To deduce the second observe 
that for any vector fields X, Y, Z one has 

(3.4.7) 

I 
{X(Y,Z) + Y(Z,X)-Z(X, y)} + 

2 

1 
+ - {([X, Yj, Z) (rY, z], X) + ([Z, Xl, n}. 

2 

The result follows then using (3.4.1) for X, Y and Z. 

The curvature tensor is defined by 

PROPOSITION 3.4.2. If X, Y, Z, Ware Killing vectors, then 

(3.4.8) 

I 
(R(X, Y)Z, W) = -{([[X, Y],ZJ, W)-([[X, Yj, W1,z)} + 

4 

1 
- -{([[Z, W],X], Y)-([[Z, Wl, Y],X)} + 

4 

1 

• 

+ - {( [X, Z], [Y, W]) + 2([X, Y], [Z, W]) - ([ y, Z], [X, W])} + 
4 

+ (S(X,Z),S(Y, W))-(S(Y,Z),S(X, W)). 

Proof By (3.4.2) we have (\lxVyZ,W)=X(vyZ,W) (VyZ,\lxW), and 
Similarly for (Vy VxZ, W). The formula follows then from (3.4.4) (3.4.S) and 

(3.4.7). • 

3.5. Curvature of H \ G 

We apply now Proposition 3.4.2 to derive a formula for the curvature of H \ G 
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endowed with an invariant metric g. For calculation we use the canonical moving 
frame With X -+ e , Y -+ en' Z -+ e , (3.4.6) gives 

" " 1 

(3.5.1) 

where C." ct". (Observe that the structure constants C. "are not, in 
I", 1 ~ I""" 

general, antisymmetric with respect to the last two indices. This because g is 
not assumed to be biinvariant. However C Il C Il owing to Ad (H)-inva-

~ ."1 ~1' 
riance of gil)' From (3.4.5) and (3.5.1) we find the Christoffel symbols r" = 

fr alJtJ 

=CV",c(l,e): 

(3.5.2) r" = 1/2(C R C" + C(3 ). "'",1 "",1 1"',,, 1.'" 

Taking also W -+ e and R Il ' = (R(e , e(3)e , e,) we get 
1 " I" " "1 u 

(3.5.3) 

I 
+-g""'{(C +C, )(C,a<+C" ")-(C,, +C (3)(C, <+C,,~)}. 4 ;':0',1' K,)"O: 1'fJ,V /'\.I),IJ Kf-')')' K"Y, nO',u !W1U; 

For the Ricci tensor Rill g"O R"'Il'Yo one then gets 

R C C --C C --C C + 
IlJ 4 ',,",(3 "'".'Y 2 (301, Ii. 'YD<,K 2 1l"',1C 1''',''' 

(3.5.4) - C~ C" - Cli C" + 
2 (3" I'ti 2 1'''' {i!f 

I 
--(C + C )C" 

2 h/J,'Y "'Y.Il"" ' 

where we use the convention that the summation over repeated indices on the 

same level is performed with g"ll. Thus, for example 

C C 
"",(3 "",'Y 

etc. 

For the scalar curvature R = gll'Y R(3) we obtain 

I 1 
(3,5.5) R ---C C --C C -C ti C" -C" CiJ . 

4 "1l.1' "il,'Y 2 "'1l,1' '''r,1l (3" Ill! K'" K(J 
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3.6. Comments 

a) The last terms of the formulae (3.5.4) and (3.5.5) are included for the 

sake of completeness only. For a compact group, and more generally, 

for a unimodular group, we have (see e.g. 120, eh. 19, 16 Prob. 14]) C i . 0, 
cd 

and therefore (since ° by reductiveness of G = H + S) the last 
terms in (3.5.4) and (3.5.5) vanish. In the following these terms will be 
omitted. 

b) If \ G is called naturally reductive homogenous space if Cull,,) are antisym­
metric also in the last two indices. Then V x Y = 1/2 lX, Y1 and 

R 

where k ij 
form!) 

+-kll ' 2 ') 

CiT CJm is the Killing metric (nonnegative, minus the Killing 

c) In particular if If \ G is a symmetric space (i.e.; C"'/l, ') 0), then 

R = 
11') 

d) If \ G is called a normal space if ga{1 is a restriction to S G e H of a 

biinvariant metric gij on G. Clearly d) implies b). Conversely, if G is con­

nected then b) implies d) but gij may be, in general, semidefinite. The 

subparticular cases are 

d
t
) If {e} (the group case) and gull = ko: ll . Then 

R = k,,~, 
P') 4 ~, 

I 
R -dim G 

4 

d2) If \ G is a symmetric homogeneous space and g"'iJ k",p' Then 
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Rp'r =-
2 

R dimH\G. 
2 

e) The Ricci tensor R Ih considered as a symmetric bilinear form on S is 

also Ad (H)-invariant. If lJ \ G is isotropy irreducible i.e. if Ad (11) acts 

irreducibly on S, then, by the Shur's Lemma, R; must be a 

multiple of 0; and therefore R PI = "Ag ~r' Thus H \ G is an space. 
f) We considered the space of right cosets H\ G. For a left coset space G / fJ 

the fundamental vector fields satisfy [Z,), Z,) - Zlu, wl with the effect 
that everywhere in our formulas ( ~ is to be replaced by - Ck .. Such a change 

II 'I 
has no effect on the curvature formulae which are all quadratic in structure 

constants. 

g) The formulae (3.5.3), (3.5.4) and (3.5.5) hold at the origin 0 EH\G 

and, more generally, at any other point p E lJ \ G for which the isotropy 

group G is fl. To go to an arbitrary point [a lone has to transform the 
p 

indices by the adjoint representation Ad (a). 

4. G-INVARIANT DIMENSIONAL REDUCTION OF METRIC 

4.], Reduction theorem 

E is not a homogeneous space. it is a collection of homogeneous spaces 

parametrized by points x EM. In this section we describe all metrics on E which 

are G -invariant. The simplest description is geometrical - without any formula! 

REDUCTION THEOREM lI5]. Every G -invariant metric on E determines, and 

is determined by. a triple of 

i) for each x EM. a G-invariant metric in the copy of H\G over x 

ii) principal connection in the principal bundle (P, 7T, M) 

iii) metric on M. • 

Let us discuss briefly the three ingredients. 

Ad i) Clearly C-illvariant metric on /:. restricts to each fiber Ex' and determines 

a G -invariant metric 011 1/ \ G. 

Ad ii) ror each .1' E E kt I;. be the subspace of the tangent space consisting 

of vectors tangent to the orhits. Define 11]' to be the orthogonal comple­

ment of '~., Then if
1
" reshicted to l' "" Ii 'E p, is a K -invariant horizontal 

distributio·n. To cOllc1ude that (1/) }' determines a principal connection 
P 1''' 
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in P one has to show that IIp is tangent to P. This follows by using ortho­

gonality of K and L (see end of Section 3.1). 

Ad iii) Given pair of vectors t 1} E T.:M we can lift them to kl'), 17(Y) lly for 
any y E Ex' Then, because of G-invariance of the metric, we find that 

(hy), 17(Y)) is indepelldent of J' and thus determines a scalar product 
at x. One can express this fact by saying that 1[ : E -. M is a Riemannian 

submersion. 

4.2. The adapted moving frame 

Each tangent space ~E decomposes into 

~E VffiH 
Y J' 

where t;,= {Zv(Y): v E G}, called the vertical space aty, is the space tangent to the 
orbit of G through y, and Hy (called horizontal) is defined as the orthogonal 
complement of t;, in ~E. The vectors in ~, and Hy are called vertical and hori­
zontal respectively. We fix a local coordinate system x /1 in M and denote by e 

/1 

the horizontal lifts of vector fields a/J' The fundamental vector fields correspond-
ing to the basic vectors fi E G are denoted, as in Section 3, by ec Then (e A) 

(e /1' e) is a moving frame in a neighbourhood of a point Po E P. The three 
ingredients of a G-invariant metric g (gAB) [gee A' eB )] can be constructed 
now as follows 

(4.2.1) 

(4.2.2) 

(4.2.3) 

g/JIJ(X) =g(e).l·), e,,Cv», 1[(.1') = x, x EM 

g"'{3(P) g(e",(p), c(3(P»' pEP, 

vp vOe-(p) + vile (P) E T P, 
a /J p 

where ea- (eil,e) corresponds to the decomposition .V'=X+Y, and 

the connection form determined by the horizontal distribution (llp)pEr 

Let us now write down the commutation relations for eA' We have 

(4.2.4) 

(4.2.5) 

(4.2.6) 

Comments 

Ie"" e) 

[c/1,e) = 

o 

FOie 
IJl' a 

a) The first relation is evident. Since e a- are linearly independent we must 

have [eo:,e
i
) Ia~ef for some structure jimctiolls fo:~' On the other hand 

[e ,e{31 = Ci {3c, since e are fundamental. On P we have 0 and there-
a fr J 0: 

fore j~~ are COilS tan t on P. 
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b) The fields c
p 

are ill Farianl by construction, therefore (4.2.5) holds. 

c) Because [op' 0) 0 it follows that rep' e.J is purely vertical. Thus (4.2.6) 

defines Fp~) However, at PEP, the vectors c p' e" are tangent to P. It follows 
that also [e ,e 1 (p) is tangent to P. Therefore Fa (p) 0, and Fa is the 

J.l. l! }JV JlV 

curvature 2 - form of w. 

d) For II EN we have pn EP for pEP, and 

e",(pn) = A (n 1):'e",'(p), (4.2.7) 

(4.2.8) g",ipn) A (n- 1 ):'A (n- 1 )~'g""/l'(p), 

where A (n ):' is the matrix of the adjoint representation 

Ad (n)e" A (n):' 

The scalar fields g"/l satisfy the constraint of Ad (ll)-invariance, infinitesimaly 

which owing to the assumed connectedness of H, is also sufficient for Ad (ll) 
invariance. According to (4.2.8) g"'/l depends on p EP in a covariant way, Thus 
it can be interpreted as a section of an associated bundle. 

4.3. The Levi-Civita connection 

The structure functions of the moving frame eA are given by (4.2.4)-(4.2.6). 
From G -invariance we also have, at PEP, 

(4.3.1) 

(4.3.2) 

e/l(c",c(J) Dpg"'/l' 

c",(cll'c) C<x/l.,),+C"')',/l' 

We use now the formula (3.4.8) to express the Christoffel symbols rAB, e = 
= (VA eB , ee) in terms of M-based quantities: 

I 
(4.3.3) r:/l,')' -; U'''/l,; '~Ol,/l+ fp,)",,) 

(4.3.4) r =-1' =-Dg 
"'/l,/l Q/l.P 2 p "/l 

(4.3.5) r =-1' 
J..iG,i J O;JJ.l' 

F 2 pV,'" 

1:".0 {the Christoffel symbols of gp!, on M}. 
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Comments 

a) DjJ. gu13 denotes the covariant derivative of gull with respect to the connection 

w. With respect to a local cross section a : M -> P it can be explicitly written 

as 

D g = a g + C'_Aag + C'_Aag 
jJ. 0:(3 jJ. ,,(3 "a j.I,(3 {la.U ""t' 

where A a = a*w ii is the Yang-Mills potential. Strictly speaking (4.3.1), 
(4.3.4) and (4.3.5) hold on P only. On the other hand (4.3.1) can be consi­

dered as a definition of Dl'g"iJ outside of P. This is similar to the interpreta­
tion we have given to (4.2.6). 

b) The structure functions fu~ are, according to (4.2.4) constant on P. Thus 
(4.3.3) is nothing but (3.5.2). 

4.4. Ricci and scalar curvature 

We give below the fonnulae for Ricci and scalar curvature of E. In the adapted 

moving frame (e A) defined in 4.2 we obtain 

(4.4.1) 

(4 '~J R = R ,,(i~1) 

2 

1 
(~4.3) --C'" g{36 D g 2 all I',~ 

1 
(4.44) R R(M) + R(H\ G) -F F 4 1''',<>' I'V.O: 

COIl1J1l1!1I Is 

a) R,p(H \ G) and R (If \ G) are given (3.5.4) and (3.5.5) with understanding 
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that ga{3 is a function of x. 
b) The derivative V in (4.4.1' and (4.4.2) acts both on internal and space-!1 _ 

-time indices with A~ and r!1';) respectively. The derivative V!1 in (4.4.4) 
is the space-time covariant derivative. It can also be understood as V!1' 

c) Let us give an example of ca lations used in derivation of (4.4.4): 

I I 
... - - V (go.!3D!1g ) + - D gQ{3D!1g , = 

2 !1 u{3 2!1 ufJ 

I 
... --;V

I1
(gCX{3D!1g",{3) 

/... 

d) The summation over repeated indices on the same level is perforLled with 

and g!1I'. por example, at p F P the term f:
1J 
"'~v" should he read as 

g!1I-1'gFV'g __ .Fa Fa: '. ' , 
aa jJl' )J P 

e) The fourth term in (4.4.4), with the derivatives D
l1
gO:{l' is printed in [15] 

with the wrong factor ~ instead of I . The pre print (CrRN) version of 

[15] gives the correct factor. 
f) There are several possibilities 0; using (4.4.1) - (4.4.4) for determining 

field equations. 
i) Acc()rciwg t'l the extrern <d1uza-Klein philosophy the field equations 

are R4B:oc 0 (a 'll11ing no matter sources in E). This means R!11' = 

= Rap R
l1

o. = O. I is possihle that the extreme philosophy should 
be used~. .1tancously \Iv; ~ II I he complete harmonic analysis of excita­

,i,)ns from the ground state and need not be compatible with an ad hoc 

restriction to G -invariant modes. 

ii) One can also try to get a dynamics of G -invariant modes from the ac­

tion principle on iH. The n ural candidate for the action is (see e.g. 

r 14]) 

f 
1 1 

T -:;­s- R(g )-(0 )-dx 
J ... lIJ ,ba:{~ 

111 

The last term of (4.4.4) gives then 
J I 

V!1(g"I1D!1go.i g!1,)2(gO:{3l) + 
I I 

rVg O: 6D!1g"{3(gl-l)2(gO:{3)2) + 
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The term a/J(.") does not contribute to field equations. For calcula­
tion of det (g ,,)1/2 any fixed basis (E ) is S can be used. It is, however, 

frp fr 

convenient to use (E ,,) which is orthonormal for a normal metric g nor-
malized to give a unit volume of H \ G. With this choice det (g",lxn 1{2 

is the volume of Ex' and integration over the fiber is already perform­
ed. 

iii) Another possibility is to take S ~ ];MR(g )1/2dx. (e.g. [21]). With this 
/J" 

choice the last term of (4.4.4) is already a divergence. However, such 
a choice is considered as too arbitrary and too eclectic: either we take 
extra dimensions seriously, or if not, then why to bring them in at 
all? 

vi) Finally, one can make a conformal transformation 

gJ.!" -+ [det (gfr/,)]'g/Ju 

where r is chosen in such a way that ii) -+ iii) + (terms with a/Jg"'iJ)' 

(e.g. [22 D. 

S. SYMMETRIES OF GAUGE FIELDS 

5.1. Example 

It is instructive to apply the methods developed above to a particular case 
considered by Cho. Cho [23] considers Riemannian metrics on a principal bundle 
which are invariant not only with respect to the structure group acting from the 
right, but also with respect to an extra symmetry group (Cho calls it «magnetic») 
acting on the bundle space from the left. Let (E, 1T, M, R) be the principal bundle, 
R its structure group, and let S be a group of inner automorphisms (or gauge 

transformations) of E. Every s E S maps Ex into and commutes with R: 
(sy)a = s(ya), a E R. The full symmetry group is now G S x R. It is this group 
which acts on E now, and to apply the machinery we were developing we have 
to know the isotropy group H. Fix J' E E and let A : S -+ R be the group homo­
morphism defined by 

S)·=1'A(S). sES. 

Then the isotropy group Gv II of y is 

(5,1.1) H = {(s, A(S» :s ES}. 

REMARK, II is the isotropy group for the right action of G, where the right 

action of S is defined by)'s = s - IV. 

Suppose that all orbits are of the same type. Then we know that P =1.1' E E : Gy II} 
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is a principal bundle with structure group N(H) I ll. Let us findN(ll) and N(ll) I ll. 
We have (a, p) EN(lf) iff (a, p) (s, X(s» (a-I, pI) (s', Xes'»). Thus s' = asa- I 

and pX(s)p-1 = Xes') X(a)X(s)X(ar l . It follows that c= X(a·l)p E XeS)' - the 

centralizer (commutant) of XeS) in R. Therefore N(ll)={(s,X(s)c):SES, 

c.E XeS)'}, and N(ll) I H XeS)'. The effective gauge group is the centralizer 
of the X-image of Sin R. 

5.2. Group action on a principal bundle. 

We now generalize the previous example to include also automorphisms which 
are not inner. Let (V,1r,E,R) be a principal bundle with structure group R, 

and let S be a (compact Lie) group of automorphisms of V. Now S acts both 
on Vand E : s : Vx -+ Vxs and commutes with the principal action of R: 

(5.2.1) (ys)r (s·ly)r s-I(yr) = (yr)s. 

Of course S may contain a nontrivial subgroup So of inner automorphisms as 

discussed above. In such a case the action of S on E is not effective. The full 
symmetry group acting on V is now G S x R. Let us find out how the isotropy 

groups of the G -action look like. Fix u E V, and let H Gu be the isotropy group 
of u. It is clear that (s, r) Ell implies that s is in the isotropy group, call it I, of 
1r(u) = J'. Now, if s E I then su is in the same fiber as u, It follows that su u X (s), 

for some X (s) E R. The map X : I -;. R is a group homomorphism. And su u X (s) 

can be also read as 

(5.2.2) H {(s, Xes»~ : s !} 

II, the isotropy group of U E V, is a subgroup of G x R isomorphic to I - the 
isotropy group of J' 1r(u). But it is imbedded in G x R on a diagonal. We shall 
assume that G x R acts on V with only one orbit type, that is that the isotropy 
group of any u E V is conjugated to II. (It implies that the isotropy group of 
any y E E is conjugated to I, but the inverse need not be true). 
Consider now the manifold M = VIG of orbits of G S x R in V. Since V is 
locally E x R it follows that VIS x R is the same as EIS: 

(5.2.3) M = VIG =E/S. 

We can introduce now two principal bundles 

Q {UEU:Gu H}, 
(5.2.4) 

p = Ll' EE : Sy = I}, 

with structure groups NUl) I Hand K 
sEi, then 5U =uX(s) n(su)=1r(u) 

N(!) II respectively. Now, if U E Q and 
sn(lI) = n(u) => 1r(1I) E P. It follows that 
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1f : U -+ E restricts to a map 1f : Q -+ P. We have therefore the diagram 

U 
':. ,/' 

t M t 

/ '" Q P. 

However the map 1f : Q -+ P need not be onto P if K is not connected. Let us 

see what is the local structure of the group N(H) I H. First of all we find, with 

s EI, 

(0, p) E N(H) ~ (0, p )(s, A(S»(O, p )-1 (s', A(S'» ~ (oso-1 =s', pA(S)p -1 A(s')) 

that is 

(0 EN(/) 

(0, p) EN (H) ~ { 

( pA(S)p-1 A(oso-I) sEI. 

We know from Section 3.1 that N(/) is locally a product N(l)lgf 1 x K. Indeed, 

the Lie algebra of N(l) is the direct sum of the two commuting subalgebras. Now, 
if 0 ik with i EI and k E K, then, withs EI, 

A(OSO-I) AUksk -Ir 1) A(isr l ) = A(i)A(S)A(i)-l, 

and therefore A(i) I P E Z A(l)', and 

p = A (i)::: , Z EZ. 

Thus, locally, we have 

N(lI) (Uk, A(i)z)}, 

and therefore 

N(H)Il!~K xZ. 

On a global level it is easy to see that Z is an invariant subgroup of N(H) I /J 

and (NUl) I ff) I Z is naturally imbedded into K, but, in general, the natural 

map of N IlJ x Z in to K (defined by a factorization of prl : (s, r) -+ s) need 

not give all the connected components of K. 

REMARKS 

a) Z is an invariant subgroup of NUl) I fl, the structure group of Q, but Q 
need not admit a reduction to Z. In fact, since Q/Z c P, if Q can be reduced 

to Z, then P is trivial. 
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b) The first papers dealing with the problem of symmetric gauge fields [25, 

26,27] concentrated on the centralizer Z and overlooked the normalizer, i.e. 

N(l) I J factor. 

c) In [26] the authors had to solve the problem of finding a local cross-section 

a of U with fixed homomorphism A. In our, geometrical, language a is a cross­

-section of the principal bundle Q, and its existence is guaranted by the «slice 

theorem» mentioned in Section 2.3 (I). 

5.3. Inner symmetries 

(U, 1f, E, R) is a principal bundle and let w be a principal connection. If s : U --> 

--> U is an automorphism of U then s *w is again a connection form. It is natural 

to call s a symmetry of w if s *w differs from w only by a gauge transformation 

i.e. by an inner automorphism Ts 

(5.3.1 ) 

Now if sand s' <ire symmetries, then 

(ss')*w = (Tsi)*W 

and (ss')*w = s'*(s*w) = S'*(T*W) = S'*T* s'-I- T~ w. 
s s s 

It follows that Tss' may differ from TiS'-I Ts ' S' by an inner automorphism 

which leaves w invariant. It is important to know this group. We call it J(w). 

PROPOSITlON 5.3. Suppose E connected. Then J(w) is isomorphic to the centra­

lizer of the holonomy group of w. 

Proof For u, v E U define u ~ v iff u and v can be joined by a horizontal (piece­

wise differentiable) path in U. If a: is an inner automorphism of U which leaves 

w invariant then u ~ v iff a:(u) ~ a:(v). Let <J>(u) be the holop.omy group at u: 

<J>(u) = {a ER : u ~ ua}. 

Fix U E U, and let Au : J (w) --> R be defined by 

a: EJ(w). 

It is straightforward to check that Au is I - I and that it maps J(w) onto the 

centralizer of q>(u) in R. For example, let us see that \ is onto. Let b E <J>(u)'. 

To define a: take any v E U and let 'Y be a horizontal path connecting v with the 

fiber through u i.e. with ua, for some a E R. Then define a:(v) == va--Iba. It is 

(1) I am indebted to Dr. J. Tafel for pointing this question out. 
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straightforward to see that a does not depend on the choice of '}', that a EJ(w), 

and that b ;\(a), what completes the proof. -

The group J (w) is of utmost important when one consider the problem of 

lifting of symmetries from the base to the bundle. J (w) describes the freedom 

of choosing a «phase factor» of the transformation and, in general, a symmetry 
group after lifting to the bundle space will acquire a multiplier with 

values in J(w). This phenomenon of appearing of projective representations 

of groups is well known from quantum mechanics. The U( I) case is, 
however, exceptionally simple. Indeed the centralizer of the homomony 
group is in this case always U(l), independently of the connection. For a 

non-Abelian gauge field the freedom of choosing a phase will depend on the 
gauge field. 

5.4. Killing vectors of a connection 

The formula (5.3.1) tells us when a given automorphism of the bundle can 

be considered as a symmetry of w. It can be read as s'·w = w, with s' = Ts-1s. 

Thus for a given w the important group is the group of all automorphisms of 

U which leave w invariant. Infinitesimal automorphisms are described by inva­

riant vector fields. A vector field X on the bundle is invariant if Xa = X for all 
a E R or, infinitesimally, if 

(5.4.1 ) VER, 

where ZIJ is the fundamental vector field generated by element v of R = Lie (R). 

An invariant vector field X will be called a Killing vector for w if 

(5.4.2) 

i.e. 

(5.4.3) Xw(Y) - w([X, YD O. 

The curvature 2·form F Dw is defined by 

(5.4.4) F(Y,Z) = (Dw)(Y, Z) = Yw(Z) - Zw(y) - w([Y,ZD + [w(Y), w(Z)]. 

Combining (5.4.3) and (5.4.4) we find that if X, Yare two Killillg vectors of w 

then 

(5.4.5) F(X, Y) = w([X, Y]) + [w(X), w(Y)]. 

This formula is similar in its content to (3.4.9) where we have given matrix 

elements of the curvature tensor of a metric between Killing vectors. 
Every Killing vector of w can be decomposed into its vertical and horizontal 
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part X = Xv + X h' with both Xv and XI! again Killing vectors. We already 
know that X v span the Lie algebra of the centralizer of the holonomy group of 

w. It is instructive to understand this property also algebraically. First of all 

observe that a vertical invariant vector field X can be also interpreted as a matter 

field of type Ad i.e. as a cross section of the associated vector bundle U x Ad(R) R. 
Indeed, vertical vectors can be identified with vectors in the Lie algebra and 

invariance of X means that x(pa) = Ad (a~ I )xlp) because of the property (3.2.1) 

of fundamental fields, With this double understanding of X one can easily find 

that 

(5.4.6) 

Thus X is a Killing pector for w iff X is covariantl)' constant. Suppose now Lx w = 

= DX = 0, Then, because of the identity 

(5.4.7) 

we find that the values of any vertical Killing field must commute with F what 

is compatible with the Proposition (5.3). 

Let us consider horizontal Killing vectors. Every invariant horizontal vector 

field (X is horizontal iff w(X):::::;.9) is a horizontal lift of a ~ector field on the 
basis. If ~ is a vector fiell! on E let ~ be its horizontal lift. Then ~ is a Killing vector 

of w iff 

(5.4.8) i(~)F 0, 

i.e. 

(5.4,9) F(t,T/)=o 

5.5. Example 

It is instructive to discuss a simple example given by Henneaux [28] (2). 

He considers a gauge potential described in Minkowski space by wl'(x) 

82x1M, where MicO is a constant matrix from the SO(3) algebra, and 

argues that translations when lifted to the bundle must acquire phase factors 

which lead to a nontrivial multiplier. Let us briefly comment on this example. 

The holonomy group of wI' is U( 1) and its centraliZer in SO(3) is again U(l). 

Thus .1 (w) = U(1) and we l/Ia,l' have U(I) multiplier. To simplify further reason­

ing suppose the gauge group was U(1) instead of SO(3). Since Fo1(x):::::;MicO 

and the gauge group is Abelian. it follows from the formula (5.4.5) that infinite-

(2) I am indebted to Prof A. Trautman for drawing my attention to this reference. 
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simal translations along the x 0 and x 1 axis must lift to llullcommutillg Killing 
vectors Xo and Xl' The fact that the gauge group is SO(3) and not U(l) does 
not change this conclusion since a moment of reflection shows that W (X 0) and 
w(X 1) must commute also in this case. 

6. DIMENSIONAL REDUCTION OF EINSTEIN-YANG-MILLS SYSTEMS 

6.1. Application of the Reduction Theorem 

We come back to the problem of describing all Yang-Mills fields with a given 
symmetry group S. As in section (5.1) we assume that S acts already on the 
bundle and that connections are strictly invariant Le. the 7s in (5.3.1) is put 
on the left-hand side. Our discussion in Section (5.2) indicates that a G-invariant 
connection w may induce a connection in the bundle Q defined in (5.2.4). It 
was shown in [24] that the situation is more complicated. w supplies only Z­

-part of a connection in Q and a N (1) 11 -part must be supplied by S -invariant 
metric on E. Therefore a natural object for dimensional reduction is not a Yang­
-Mills field but an Einstein -Yang-Mills system. Another justification to this 

assertion is that the Yang-Mills Lagrangian for a connection Wu on U involves 
metric gE on and if the action is to be G-invariant then /Jut only Wu but 

also gE must be G-illJ!ariallt. 

Now, let w u and g E be both G -invariant. According to the Reduction Theorem 
given in Section (4.1) we can use a fixed biinvariant metric [) R on the structure 
group R to built an R -invariant metric g u on U. Since the ingredients g u was 
built from were all S-invariant, it follows that gu is not only R - but also R x S­
-invariant. Thus the problem of classifying all S -invariant Einstein -Yang-Mills 
systems has been reduced to the problem of classifying all R x S invariant metrics 

which induce a fixed biinvariant metric on R. And this latter problem can be 

easily handled with the methods we already learned. According to the Reduction 

Theorem we have (observe that UIS x R M) 

gu ~ wQ 

scalar fields 

The gM and w
Q 

parts are clear. Let us discuss the scalar fields. To know their 
nature we must decompose the Lie algebra G of G S x R. Let 

S=J+K+L 

be the decomposition of S as discussed in Section 3.1 (with the difference that 

H is now J, G is now S, and S is now L) 
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S +f< =J+K + L +R. 

Now, recall that II {(s, A (s» : S E J } and therefore 

H {v+A'(V):VEJ}. 

where A' is the derived Lie ialgebra homomorphism. It follows that 

G=H+K+L+R 

and one can easily check that this is a reductive decomposition. Our scalar field 
determines thus an Ad (H)-invariant scalar product on K + L + R. The scalar 
product on K + L clearly comes from and the one on R from fiR' It follows 
that Wu determines scalar product (K, R) and (L, R) or, equivalently, linear 
maps K ~ Rand L ~ R where we have identified R with its dual using fiR' 

6.2. Geometry qf scalar fields 

Let us take a closer look into the geometry of scalar fields. Here again we 
find a place where the Reduction Theorem finds its natural application. First 
of all, we know that the scalar fields describe a G-invariant metric on H \ G. 
But now G =SxR and If res, A(S)) :SEJ}. Let us see that now H\G is a 
principal bundle Ol'er 1\ S with structure group R. The projection 7r : H \ G ~ 

~J\S is defined by 7r: [(s,r)J ~ [sL where 05 ES, r ER, and the brackets [ 
stand for If and J cosets respectively, Action of the structure group R is given 
by [(05, r) ]r' [(s, rr')]. Finally S acts on the bundle by bundle automorphisms 
t[(s,r)] [st- 1,r)] which induce the canonical action of S on the base I\S. 

Our scalar field is a metric on the bundle which is, in particular, R -invariant. 
Thus, we know, it determines: metric on the base I \S, connection on 1\ S 

with gauge group R, and R-invariant metric on R. Let us describe this explicitly. 

We use indices 0:, {3 for K + L ::::: S / J, and indices i, j for R. Then g H\G decom­
poses into 

gail ha{J+ ¢~¢~Oii' 

go:j = I/!~ fit;' 

gij = °ij' 

g°:i=+hO:{J¢i 
iJ 

gij = oii + ¢i ¢ihO:fJ 
0: fJ ' 

where 0 ii are the components of the Killing metric on R, h o:fJ is the induced 
(still S-invariant) metric on J\S, and - ¢~ is the gauge field on J\S with gauge 
group R. It is the field ¢~ which comes from the reduction of the original Yang­

-Mills field wU' It satisfies the constraint of Ad (If)-invariance 

¢ 0 Ad (8) Ad (A(S)) 0 ¢. 
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or, infinitesimally, 

where the index it runs through J. Since i/J intertwines the representations of / 
on K + L and on R (via A). and since the representatjon of / on K is trivial, it 

follows that i/J (K) must commute with A (f) i.e. i/J (K ) C Z Lie (Z). Manton 

used tha scalar field i/J~ to describe Higgs fields of the Weinberg-Salam model 
129]. In his example K is triviaL 

6.3. Results 

We end this section with giving the result of the dimensional reduction of the 
scalar curvature Ru with the Killing metric for R. For details see [30]. We have 

with 

RE 

YME,R 
RR 

R}I1 

YMM.N(H)IH 

L (h a~) 

Ru = RE + YME.R + RR = 

RM + YMM.N(H) IH + L (h ao ) + L (i/J). 

- scalar curvature of E 
- Yang-M.ills Lagrangian for (lJ, 11, E, R) 

scalar curvature of R endowed with the Killing metric (constant, 
see (3.6.d)) 

scalar curvature of the metric g 1''' on M 

Yang-Mills Lagrangian for (Q, 11, }4, NUl) I If) 
Lagrangian for scalar fields from (see the second, fourth 

and fifth terms of (4.4.4) replacing gall by II a()' 

The term L (i/J) containing the fields i/J~ is 

L (i/J) Kin (i/J) + V(i/J) + 0 (i/J), where 

Kin (i/J) 

o (i/J) = 

where i, 1 run through K and i, j through L. Thus. when K is nontrivial we have 
a lIollmillimal interaction term for i/J : K -c> Z. 

REMARK. It should be stressed again that the dimensional reduction of Einstein-
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-Yang-Mills system by imposing symmetry group S is equivalent to the dimensio­

nal reduction of a metric with Ilonsimplc symmetry group and diagonal imbedd­

ing of the isotropy group. 

7. COMMENTS ON RELATED ROPJCS 

".. 7.1. Einstein -Cartan theory and spinors 

To discuss spinors we must go beyond mctric formalism and introduce the 

vielbein bundle. There are SUbtle differences between different approaches to this 
problem. We choose one which allows us to teat spinors even if space- time does 
not admit a spinor structure. 

Let E be an II-dimensional manifold, let 'I) diag (+ I, + I, ... ,- I, - 1, ... ) 
be the standard flat-space metric, and let A: Spin ('I)) -+SO('I)) the twofold spin 
covering. Let (P, Jr, E, Spin ('I))) be a principal bundle over E with structure group 

Spin ('I)). (Such a bundle always exists, for example we can take the trivial bundle 

E x Spin ('I) n. Let p : Spin (rj) End (V) be a faithfull representation of Spin (1'/) 

in (real or complex) vector space V. The associated bundle P x p V is called 

the bundle of spinors of type p. The group homomorphism A may be considered 

as a (non-faithful) representation of Spin ('I)) in JR", We can therefore build the 

associated bundle P x X. JR". The dynamical variables of the Einstein -Cartan 

theory are 
i) principal connection win P 
ii) Ol1C- form e : TE -+ P Xx. JR" on E with values in the bundle P x A JR". 

We can also add spinorial matter as 

iii) cross-section lj; of the vector bundlc P x p V of spinors, 

How do we build a Lagrangian for this theory? e is a one-form on E with values 

in the associated bundle. The curvature n = Dw can be considered as two-form 

on E with values in P x Adso('I)) corresponding to the adjoint representation of 

Spin (11) on its Lie algebra spin (11) = sO(ll). The Lagrangian II-form is then given 

by 

where nob = n° ll cb , Of course was written with respect to a local cross· e 
-section of P - e has now indices and n also - but the Lagrangian is clearly 

independent of a. This because E and 11 are invariant tensors of SO ('I)). 

It is crucial that no catastrophv occurs even if det Eo)O(x) = 0 at some point. , M 

e is called a soldering fom1 and sometimes vielbein. In our formulation vielbein may 

be allowed to become degenerate and even vanish. We can say even more: e must 

become degenerate at least at one point if the topology of E does not allow for 

a spinor structure. What is more interesting is that no catastrophy occurs also to 
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rhe Dirac Lagrangian lI'hen l'ielbein degcncrates or (,l'en Val I islz es. The Dirac La­

grangian is described as follows. We assume that in V we have given not only 

a representation p of Spin (1]) but that p is derived from a representation of the 

Clifford algebra C' (rll. If fa are the endomorphisms of V representing the basis 
vectors of lR", the; 

and 

r E Spin (7]). 

We also aSsume that in V we have given a bilinear (or sesquilinear, if V is complex) 
scalar product invariant under p (Spin (f/)). Then 

I eaIA ... Aean-IArall 
~Dirac = Eal ... a" 

with 

where D lj; is the covariant derivative of lj; with respect to the principal connection 

w. It is evident that e may become degenerate without doing any harm also to 
tltis Lagrangian. I hope to discuss these problems elsewhere. Here let us consider 
the problem of spinor fields with symmetries. 

7.2. S-invariant spinors 

Since spinors live in a bundle associated to P, their symmetries must be describ­

ed in terms of vector fields on P and not on E. Thus we meet again (see Section 

5) the problem of lifting symmetries from the base to the bundle space. Here 

however this problem is easily solved if 8 is everywhere of the maximal rank. 

Indeed, it is easy to see that then for every vector field X all E there exists a 

unique im'ariant lift i of X to P such that Lie = O. Now, a spin or field lj; can 

be also considered as an equivariant function on P with values in V: 

lj;(pr) p(r l)lj;(p), r E Spill (7]). 

Therefore we can call X a symmetry of lj; if 

Lilj; = 0, 

where X is determined by Li8 = 0, 1T*X -= X, and the invariance of X. In general 

however, when det (8) is allowed to vanish we can not avoid the lifting problem 

and we have to assume that action of the symmetry group S on the bundle P by 

automorphisms is somehow given. We can write an integral version of the last 

formula 
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!f;(sp) = !f;(p), s ES. 

Invariant spinors on E can then be described in terms of spinor multiplets on 
111 == F/S. However, we can easily relax the last condition without loosing its 

nice properties. Assume in V we have also a representation oc of the group S 
which commutes with p (we have not assumed that p is irreducible). Then !f; is 
called oc-equivariant if 

!f;(sp) oc(s)!f;(P). 

For example, in five-dimensional Kaluza-Klein theory S may be taken U(l), 

and oc = ocn a character of U(l) i.e. ocn(!/» = exp (in !/». Then ocn-equivariant spin or 
on E is a spinor on 111 carrying electric charge ne. (See Ref. [49]). 

7.3. Color and Higgs charges 

In a simple Kaluza-Klein theory on a principal bundle, and without scalar 
fields, it is well known that geodesics in the bundle project onto the trajectories 
in 111 which describe particles with a color charge interacting with non-Abelian 
Yang-Mills field via Lorentz-type force (see e.g. [31], [32]). Consider now a more 

general case when G acts on E with orbits of type H \ G and scalar fields gail' 

Assuming metric in E to be G-invariant we know that the effective gauge group 

is N(H) I Hand g"'lI(x) describe G-invariant metric in H \ G - the shape of the 
copy of H \ G at x. Let us also recall that the field g"'l1 splits into two kinds: 
gall (g'iib,gab)' where (gaC) is a scalar product on K, and (gab) an Ad(1l)-inva­
riant scalar product on L. Here K is the space of all Ad (H) singlets in G / Hand 

L is the Ad (ll)-invariant complement of K in G / H (see Section 4.1). The Chri­
stoffel symbols of the Levi-Civita connection have been already calculated so 

that it is easy to write down geodesic equations in E. A careful discussion is 
however necessary to analyze their projections on M. Let us give here the results 
(for details see [33], [34 D. The projected trajectory describes a particle with two 
charges; a color charge qii and Higgs charge AO

• Both take values in associated 

bundles: q in P x Ad K and A in P x Ad ( L / H). The equations of motion are 

Dx!l ~ I 
q~Fii x"+ qiiqbD (g_-) + _ AaAbD g 

dt ° !l" 2 !l ob 2 !l ob 

Non·Abelian 
Lorentz force 

Type I 
Higgs force 

Type I Type II 

Type II 
Higgs force 

charge nonconservation charge nonconservation 
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It is interesting that the Higgs charge A has a geometrical interpretation of describ­

ing the slope of the particle trajectory with respect to the principal bundle P 
imbedded in E. Observe however that the word «charge) really means «chargc~1 

mass ratio» here. 
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