Ann. Inst. Henri Poincaré, Section A :

Vol. XXXVIIL, n® 2-1983, p. 99-111. Physique théorique.

Conservation laws
and string-like matter distributions (*)
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SumMary. — Equations of motion for singular distributions of matter,
like point particles, strings, membranes and bags are derived by Souriau
method. Interactions with metric tensor, non-Abelian gauge fields and
G-structures are taken into account. Particles carrying spinorial charges
in super-gravity field are also examined.

RESUME. — On obtient par la méthode de Souriau des équations de
mouvement pour des distributions singuliéres de matiére, telles que des
particules ponctuelles, des cordes, des membranes et des sacs. On incor-
pore des interactions avec le tenseur métrique, avec des champs de jauge
non abéliens et des G-structures. On examine aussi le cas de particules
portant des charges spinorielles dans un champ de supergravité.

1. INTRODUCTION

It is well known that the geodesic principle of general relativity can be
derived from energy-momentum conservation, the latter being in turn
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100 A. JADCZYK

a consequence of general covariance of the theory. Some authors (see
e. g [1] [2]) claim that also the equations of motion of the Nambu string
can be derived by this method. We study singular distributions of matter,
like point particles, strings, membranes, bags, etc. in a field of geometrical
objects like metric tensor, gauge fields, G-structures. Instead of deriving
relevant equations from conservation laws we follow a much simpler
method of Souriau [3] which allows us to proceed directly from inva-
riance to equations of motion. Nevertheless we have found it more conve-
nient to change philosophy and appeal to Aristotel’s Golden Rule of
Mecchanics rather than to « general covariance ». After formulation of a
general framework in Sec. 2 we proceed to consider motions of charged
singular distributions of matter in gravitational and non-Abelian gauge
fields. For I-dimensional distributions we get equations of Kerner and
Wong [4] [5] [6] [7]. and for 2-dimensional ones our equations contain
those derived by Niclsen [8] from an action principle. In fact, as is dis-
cussed in Sec. 3 and 4, Nielsen’s equations are stronger than ours since
they specify internal encrgy-momentum tensor of the string in terms of
its geometry and its current. Our analysis is to be compared with that
given in [/] [2] where (apart of the fact that we include gauge fields not
discussed there) the authors overlooked the fact that conservation laws
do not determine string’s dynamics unless its internal dynamics is specified
so that Cauchy data’s constraints become explicit and an appropriate
phase space can be defined.

In Sec. 6 we discuss a wide class of theories where geometry is described
in terms of a G-structure. It is found that a possibility of deriving a full
dynamics from conservation laws. even for point particles, depends on the
group G. Orthogonal groups are the best in this respect what distinguishes
field theories based on multi-dimensional Riemannian geometries (endowed
with any set of covariant constraints like e. g. Kaluza-Klein theories).
Supergravity [9], considered as a constrained Lorentz structure on super-
manifold, seems (o have too poor a structure group to give deterministic
equations of motion for a point particle endowed with mass and spinorial
charge. Much better in this respect is metric supergravity [/0] [//]although
it may cause some other problems [/2]

2. THE GOLDEN RULE

Let # be a space of gecometries of certain kind and let #, be the tangent
space to 4 at »e 4. Vectors o7 € #, correspond to possible displacements
of » in #, and linear forms on #, correspond to possible matter distributions.
Usually each 2 € # is constrained to represent geometry of a fixed manifold 2
so that #, can be identified with an appropriate space of geometrical objects
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CONSERVATION LAWS AND STRING-LIKE MATTER DISTRIBUTIONS 101

on #. Automorphisms of # induce motions in 4 and those displacements
o7 € # which are induced by infinitesimal automorphisms form a subspace
#¢. Vectors from #¢ may be called virtual displacements compatible with
constraints. The Golden Rule states that in a state of static equilibrium
of 7€ # with respect to a given action # € #% of matter one has

(F. 0 H»=0 (2.1
for all &7, € #¢.
Infinitesimal automorphisms of # form a Lie subalgebra T of the algebra
of all vector fields on #. When #, is identified with some space of geo-
metrical objects on # then

#$={Ly:XeT},

where Ly denotes Lie derivative.

Matter can be distributed on :# smoothly, or it can be concentrated on a
submanifold .#~ of 2. The latter case is more general (since we can take
in particular for .4#" an open subset of #), and assuming that matter is
regularly distributed on .#" (2.1) can be written as

J (F,Lyd>=0, XeT (2.2)

where .# is some field of densities of geometrical objects (dual to those
in :#,) defined on .#". To avoid inconsistencies we shall always assume
that T and £ are in such a relation that the integral (2.2) makes sense.
In some cases vector fields from T can be assumed to have compact sup-
ports, and in other cases the restrictions of XeT to .# will have either
compact supports or vanish at infinity sufficiently fast.

3. GAUGE GEOMETRIES

Let (:#, n, B, G) be a principal bundle over B with structural Lie group G
and projection n : :# — B. With the bundle structure fixed (constraints)
a geometry 7 of 4 is assumed to consist of a pair (g, w), where g is a metric
tensor on B and w is a principal connection on . In order to be in agreement
with the general framework of Sec. 2 we should lift g to an invariant horizon-
tal fensor on 2. However, since final results happen to be expressible in
terms of K = n(.#") only, we shall simplify our reasoning from the very
beginning and assume that matter is distributed regularly on a subma-
nifold K of B.

Let % be the space of all principal connections on 2. If v, w" €% then
dm = ' — w is a horizontal 1-form on 2 (i. e. dw vanishes on vertical
vectors) of type Ad (i. e. dw,,, = Ad (¢~ "dw,, for p e 2, a € G). Therefore %,

pa
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102 A. JADCZYK

can be identified with the space of 1-forms on B with values in the asso-
ciated bundle 2 x %, where % is the Lie algebra of G.

Let.# denote the spdce of all Riemann metrics on B. If g, ¢"e./# then
d¢ = g’ — g is a symmetric tensor of type (0,2). Therefore an element
F e j’w“ = (6,)* D (M )* reguldrly distributed on K can be identified
with a pair (@, /) where ? = (&™) is a density on K with values in sym-
metric tensors of type (2,0), and ¢ = (/") is a density vector field on K
with values in the associated bundle 2 x %* so that

1
(F, o) :L<2?ﬂ7““5gm. + <j",5wu>>d”’t, (3.1

where x*(u = 1, ....n) and (i = 1, ..., m) are coordinate systems on B
and K respectively.

An infinitesimal automorphism of £ is an invariant vector field X on &
(i.e. [X.Z,] = O for all he %, where Z, is a fundamental vector field gene-
rated by h e %). If X is invariant, then 7, X is well defined and the Golden
Rule (2.1) reads

L (;70"““L,,,,Xg“v + 7 Lxu)u>> =0, XeT, (3.2)
where T is the Lie algebra of all invariant vector fields X such that = (supp X)
is compact.

To investigate consequences of (3.2) we observe that T =Ty @ Ty,
where Ty (resp. Ty,) is the space of all vertical (resp. horizontal) vector
fields from T. If X € Ty then 7, X = 0 and X can be identified with a sec-
tion y of # x % so that X(p) = Z,,(p), where p.h, = x(p). With such
an identification one has

(Lxw)(&) = &"D,x 3.3)
where D, denotes the covariant derivative with respect to w. Replacing x

by ay, where « is any function on B vanishing on K, we get from (3.2)
and (3.3) (see [3]):

L<da(f),x>d'"t:0, (3.4)

and taking into account arbitrariness of y and « we deduce that the vec-
tor #*is tangent to K so that there exists a vector density ; = (/) such that

JHr=xt) (3.5)

where x* = dx*/0t’. From (3.3-3.5) we have
f Dy >d"t =0
for all 7. Since ¢ /%, Dy > = (<" x>) — {Di/% 1), and owing to the
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CONSERVATION LAWS AND STRING-LIKE MATTER DISTRIBUTIONS 103
arbitrariness of y on the boundary JK of K we deduce that ,* on K is
tangent to ¢K. On the other hand, since y is arbitrary in the interior ol K.
we conclude that _

D,/ =0 (3.6)
It remains to consider (3.2) for X € Ty;. Every such X is a horizontal lift /{
of a vector field { = n, X on B. Since (L;,w)(Al) = QE, {), where Q = Do
is the curvature 2-form, and since L.g,, = V,{, + V,{,, it follows that

j (VL + I > )™ =0 (3.7)

Replacing { by «{ as above and taking into account symmetry of &"* we
deduce that there exists a symmetric tensor density /” on K such that

o = /f.fxi_lx‘: (3 . 8)

Theterm &0, in(3.7)can be now transformed mtoﬁ(/" ¢y + Q‘(“(/”x")
and, since { is arbitrary on ¢K, it follows that /¥ on 0K 1s tangent to JK.
On the other nand arbitrariness of { in the interior of K leads to

ING) + Do g + ( 7m Q> =0 (3.9)

Let g;; = g,,xix] be the induced metric on K. The Levi-Civita connection
of g;; can be easily found to be

rij.k = ru\ a\ﬁl\ Yk + g,u\ Yu
After contracting (3.9) with g,;xi we find
Vi QY =0 (3.10)

where Q;; = Q, x'x} is the restriction of Q,, to K and V; is the Levi-Civita
connection of (K ,g,-,). It follows that /¥ and /, can be interpreted as internal
energy-momentum tensor and current densities on K.

To summarize our discussion: the following conditions i) and ii) are
necessary for matter regularly distributed on a submanifold K of B to be
in equilibrium with geometry represented by (g, »):

i) there exists a symmetric tensor density /Y and a density ;'
in K x ;%% such that

with values

Di/'i:() (3.1
LX) + T 79XEY 4+ L0y X =0, (3.12)

and. in particular, - o
V() + <005 =0, (3.13)

ity if K has a boundary ¢K then /9 and ;" are tangent to 0K on K.

Remarks. 1) To make it easier to compare our results with thosc
obtained by different methods we give some explicit expressions. Lct
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104 A. JADCZYK

e, =1.....p) be a basis in % and let [e,, ¢y = Che,. Coy being the
structure constants for 4. We also fix a section o of 2 (gauge) to introduce
Ay =A, = — oo by =FLe, = — a*Q,,.and let ;' = /e¥, where ¢

is the dual basis in %*. Then
L0y = jaFr .
(D; /'), = Cija— C;/fA{i_/'L

and V.= 00 T,

2) When we talk about densities we always mean densities with respect
to coordinate systems on K 1. c.

/A,'r _ I(“,r//(’jtl | .((’}[i'//(",[i)/'iq
e R = T

3) When K has a boundary éK and a local coordinate system (t)yon K
is chosen in such a way that t' = const represents points on ¢K, then if)
means that ;' =0 and /" =0, i=1,....m on dK.

4) When dim K = 1 we putm = /'"and y = ,'. One can always choose
a parameter 1 = s on K in such a way that g, = 1 (proper time parame-
trization). Then (3.13) implies that ., = const and (3.11y, (3.12) read

ul X7+ TLNN") 4 ¢, B =0,
Pu — C;/,//a,,\”‘Aﬁ =0,

which are known as Wong's equations [4] [7].
5) When dim K = 2. and assuming /Y to have determinant —1, one
can always choosc coordinates (7, ) on K such that /¥ = »" is constant
N

and diagonal e. g np;; = diag (2m, 2n). Then with x*= Av"/dr, X" = x"/co.
p =/ and J = 7y, /' the equations (3. 11) and (3.12) become

N T DR — ) = 2 (X — X)) = 0,

(Cp/cTy — (0)/Ca) = CL Al p — XM).

These cquations coincide formally with those given by Nielsen [8] but
this coincidence is not exact, since although J nccessarily vanishes on a
boundary ¢ = const, we get no endpoint condition x™ = 0 and no Cauchy
data’s constraints.

6) If Ly; = 0 then X may be called a Killing vector field for ». In our
case X = (&, y) is such a field if and only if

i) L:g,w =0

i) Dy + Q< =0.

Every Killing vector field (&, ) determines a conserved quantity (see [3]
where point particles are discussed). Suppose K is parametrized by
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CONSERVATION LAWS AND STRING-LIKE MATTHER DISTRIBUTIONS 105

(.1, ..., in such a way that sections T = const are bounded. Given
a Killing vector field X = (& ) define for each 1

Py(®) f (E /T Gl
T const

Then Py is independent of t and may be called a momentum of K in X
direction.
For an Abclian gauge field every constant y defines a Killing vector so

that J/" is conserved, and. on the other hand, i) and ii) imply that

L.g, =L, =0. Every such ¢ determines a unique (up to an additive

y 2w

constant) y such that (S, y) is a Klllmg vector field for (g, ).

4. COMPARISON WITH KALUZA-KLEIN APPROACH

N. K. Nielsen has derived his equations for a charged string via a Kaluza-
Klein theory [8]. In that framework one considers .4~ to be a submanifold
of # and starts with an action

S~ J 4 dm 4.1)
#

h;; being a metric on .#" induced by metric

where /4 = |deth; |,
gan (A,B=1,....,n4+p) on P

To define g, it is convenient to choose an orthonormal frame (¢,,), -1,
on B, and a Lie algebra basis ¢,(x = 1, ....p) in %, to form a viclbein ¢,
on .# defined by ¢,, = /vm (~. being the hon/ontdl lift) and ¢, = Z, Then
¢ is defined by g, = 1,,, (diagonal and constant), g, being an invariant
scalar product in % (assumed to exist), and g,,, = 0. One gets then for .4
the simple equation
Dxdr =0, ' 4.2)

where 7 : . # — 2 is the canonical injection: /(p)=p for pe #. The *
denotes Hodge dual operator for .# equipped with induced metric
hi; =gapxtx¥. and D stands for exterior covariant derivative with respect
to an affinc connection on 2. We observe that d/, which maps every vec-
tor tangent to .4 into itself but considered as tangent to #, may be inter-
preted as a I-form on .# with values in the associated bundle T#|,.

Equation (4.2) makes sense for any affine connection on 2, but the spe-
cific action (4.1) singles out the Levi-Civita connection T} of gap. If
(1) | _mare coordinates on .#", and x7 is defined by ¢; = x? ¢,, then (4.2)
becomes

RVa® 4+ TiexPad) = 0. (4.3
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106 A. JADCZYK

where V, stands for Levi-Civita connection for (47, h;) and [ are given

. . 1
by I={™1 _the Levi-Civita connection for g""=n""¢}.e er, 1%, =— 5 Q.
1 . -
=T, == Q.. FJ/, = _ Cj, — the structure constants of G.
2 2
For A = a(4.3) gives )
Vi =0, 4.4)
where
J* = h) = — Wiy, (4.5)
and for A = m we gel
RV + L0, xr) + Jin Xy = 0. (4.6)

Fquations (4.4)-(4.6) have a form similar to (3. 11 )-(3.12) but the meaning
of symbols is different. The current ;7 is a vector density on K = n(.4")
with values in .2 x %% while Ji is a vector on .4 with values in 4*. The
«D;»in (3. 11)refers to a covariant derivative with respect to @ whereas V;
in (4.4) is the Levi-Civita conncction. However it is enough to consider .4
as a section ¢ : K — % and put

1

) = Ha(y)?a(y). Jia(y).,  veK, (4.7)

to make (4.4) and (3.11) exactly to coincide. Similarly, with

i
/(y) = Mol y)Phia(y),  yeK,
(3.12) and (4.6) coincide. We note that it follows by the very definition that

hij = gij T Zaup ?J,tii (4.8)

and also that N
—Ji=w;—w

where @ is a unique flat connection with respect to which .#" is parallel.
It follows that Nielsen’s equations (4.2) constitute a very special case of
more general formulas (3.11)-(3.12) characterized by the fact that there
exists a current J; such that

i) w=w-+l is locally flat,
1
ii) /= Y, (4.10)
1
iii) Ji=1% T,

where h;; is givcn by (4.8) and ¢ is some section over K which is parallel
with re%peut to @. One can check then energy-momentum conservation
formula (3.13) by explicit calculation from (4.10 i), (4.8), (4.4). The end-
point condition for x(t) follows also from (4.8). On the other hand it
follows from (4.10) that a conserved fluxoid characterizing the bundle
1~ Y(K) exists for a closed string (see [8]).
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5. G-STRUCTURES

Our definition of a G-structure differs slightly from a conventional one
(sce e. g. [13]) but such a modification scems to be necessary if methods
of Sec. 2 are to be applied. The following definition works also quite well
when one wants to describe interaction of a gravitational field with spi-
norial matter consistently.

Let G be a Lie group and let p be a homomorphism of G into GL(N).
Let .# be an N-dimensional manifold and suppose that a principal bundle 2
over .# with structural group G is fixed. By a G-structuration on ¥ we
mean a bundle homomorphism ; from 2 into the bundle of linear frames
over 4, such that

Hga) = (q)pla), qe . aeG.

Let # denotes the space of all such homomorphisms. Il 7, /"€ # then
(g) = APA(g), where A @ 2 — GL(N) satisfies

Alga) = pla HA(g)pla).

It follows that .#,. can be identified with the space of sections of the associated
bundle 2 x (; 4/(N) corresponding to the representation Adp of 7 in 4/(N).
Every automorphism @ of 2 induces a map ¢ of :# by

(p)Nq) = DFAD 1), (5.1)

where @ denotes the induced map 2. To describe infinitesimal automor-
phisms and their action on £ it is convenient to fix a section ¢ of 2 and
introduce vielbein e,(p) = (a(p))a. A = 1, .. .. N. Then #, can be identified
with space of functions A : .2 — 4/(N). Infinitesimal automorphisms of 2
form a Lie algebra T of invariant vector fields on 2. If X is such a field then
¢ = n, X is well defined, and there exists a umque invariant vector field Y
such Ihdt Y(a(p)) = (5,.ENo(p)). (In other words Y is a horizontal projection
of X with respect 1o the flat connection induced by o). Therefore one can
split T into T = Ty @ Ty, (This splitting is not a natural one and depends
on ¢), and it is casy to see that (5. 1) implies that # consists of A-s of two
types

i) oA = p'(v), v:f - G,

if) duly = [< el (5.2)
where p’ is the derived representation of % in GL(N), and & 1s a vector
field on .2, Both r and & will be assumed to have compact supports. It is

clear from (5.2) that we can restrict ourselves to a case when G = p(Q)
is a subgroup of GL(N) without loosing generality.

Vol XXXVIII, n® 2-1983.



108 A JADCZYK

Let #° be an m-dimensional submanifold of .2 and assume that matter
is regularly distributed on .#" and is represented by a density

FoA o g/(NJF = 4/(N).

Then the Golden Rule states that in equilibrium of matter .# and G-struc-
ture s (represented by A) we have

J TRy =0,  SAes* (5.3)
v

From (5.2 i) onc gets immcdiately
FReny =0, rey, 5.4

and ii) implies that there exists vector density ;74 on .# such that 7§ =x? 4},
where \P is the component of a vector ¢;, tangent to the coordinate line #/,
with respect to ¢;. We also find that

p) /i is tangent to ¢4 on  OA for A=1,...,N (5.5)
O~ Bt A= 0, |
where ESy are defined by
[ea. eg] = ESgec. (5.6)
SPECIAL CASES.

1) Orthogonal structures.

Supposc G is a group of all linear transformations preserving nondege-
nerate symmetric matrix 7,,. The condition (5.4) gives then F 54 = 748,
where .78 = .72,'® and it follows that there exists a symmetric tensor
density 7% on .#" such that

y i
JiA = NawX; /s
/' being tangent to &% on ¢.#". Let I'je be the coefficients of the Levi-
Civita connection for (4, i1,,). Since I has no torsion we have
¢ _ RC
l—‘/\B l—‘B/\ - E/\B*
and owing to (5.4) we get

h(\lif? rl)‘\//
so that (5.5) becomes
LX)+ T/ aix® =0 (5.7)

1
It is convenient to introduce tensor TV =/ */Y, where h;; = nypxfy? is
the induced metric on .#". Then (5.7) reads

V{THAS) + TIS et = 0, (5.8)
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where V; is the Levi-Civita connection for (7, h;;). By contraction with x;,
it follows from (5.8) that
VTY =0, (5.9)

and a particular, natural, solution of (5.9) is T = h'. In such a case (5.8)
coincides with (4.3) (we note that (5.8) remains true when vielbein indices
A, B, C, ... are replaced with indices corresponding to a coordinate system
on #). 1t is only for dim .# = 1 that (5.8) determines dynamics of %
completely (geodesic principle). When dim .#" > [ one has to specify
in addition an internal dynamics of .# i. e. to single out a particular,
conserved, energy-momentum tensor TY on .4

2) Supergravity.

Supergravity has been formulated [9] as a constrained Lorentz structure
on superspace. The relevant group G can be described herc as follows:
lety,, = (y%,) be a fixed set of real p-matrices (m,n = 0,1,2,3, u,v=1,2,3.4)
satisfying | s 7w ) = 2y 1 = diag (=1, +1, +1, +1), and let C=(C,,)
be a fixed charge conjugation matrix, so that Cy,, are symmetric; then G
consists of all pairs of real 4 x 4 matrices (A, A) satisfying

i) ATgA =y
i) A'CA =C
l”) Anl"mA7 P = A'r'nh)'rr
[t is evident that G is isomorphic to SL(2, C), and for its Lie algebra we have
. 1.
A = ; Amnznmv (5 - 10)
where -
[
Zmn :2‘ [A)’mﬂal‘n]- (5]])

# is now a supermanifold of dimension (4.4) (see [/4] for relevant defi-
nitions), and G is considered to be a subgroup of GL(4, 4). Applying methods
developed in this section to the case of a point particle we find thata 1-dimen-
sional distribution .#" in :# has to satisfy

a) /;A — XA e + XPT Ry e = 0.

5.12
b) (— DPej jiax® =0, ©.12)

where A = (m. 1), /14 is an even density defined on £, and 'S and T§,; are,
respectively, coefficients of a G-connection and its torsion. We remark
that now the order of factors is relevant in (5.12). The relations (5.12 5)
can be easily solved owing to (5.10) so that one gets

’ / S N H gy
b) FmXn = finXm = Z‘mn Ny S
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Since CX,, and CysX,, are symmetric and { X", X"} = 0, a particular
solution of (h’) can be written as

///m = - //’\.‘m
‘( ( o+ / ))u\ s

in which case both sides of (b’) vanish separately. Here . #, «, / are arbitrary
functions of the parameter ¢, with values in the even part of a Banach-
Grassmann algebra [/4]. One can adjust parameter { by demanding the
number part of M 1o be constant. In case of a super-symmetric super-
space [/4] one can usc a local coordinate system (x“, () such that the

viclbein { ¢, | becomes
. N¢N
O = ():n(' as
. 1
e, = 030, — = 7405000,

H woa );u
Then (5.12 a) reads

Po = const.,

1 13
Pat s 74,0%p, = const.. (5.13)
where B
Pa = Mx,.
(5.14)

I

P, = (Cla + by )1,{() + - Mﬂw,()"\’“

The equations (5.13) give conservation of momentum p, and spinorial
charge ¢,
‘11 = (C((l + b’}’S))ali()li + M)":ﬂ‘k¢l()l}'

The two conservation laws can be also deduced by a reasoning similar to
that of Remark 5, Section 3, the momentum conservation being a conse-
quence of translational invariance while spinorial charge conservation
follows from invariance under supertranslation. The resulting equations
contain those obtained in [/5] from a Lagrangian based on a line element.
[t is not clear whether other solutions of (5. 12 #”) can be of physical interest.
It is also to be observed that the coefficient « and b need not be constant
along the trajectory.
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