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We investigate some aspects of complex geometry in relation with possible applications to
quantization, relativistic phase spaces, conformal field theories, general relativity and the music
of two and three-dimensional spheres.

1. Introduction

Complex manifolds and in particular classical domains have been studied for
many years by mathematicians and theoretical physicists. The very old division of
branches of Mathematics between Algebra, Analysis and Geometry is rather arbitrary
since all these aspects are inter-related but it remains that it has some deep psycho-
logical influence which explains why it is more a classification of mathematicians than
a classification of mathematics. For instance, we cannot say that the study of complex
domains (and in particular Cartan classical domains) belongs more to the realm of
analysis than to the one of algebra or of geometry but, it is clear that most mathematical
articles dealing with the subject fall into one of these three families. Often, articles
belonging to a given category do not refer to papers dealing with the same subject but
written from a different point of view. The same mathematical objects (Cartan classical
domains) have been studied—often without noticing it explicitly—by theoretical
physicists interested in a variety of different topics: particle physics, quantum field
theory, quantum mechanics, statistical mechanics, geometric quantization, accelerated
observers, general relativity and even harmony and sound analysis. The present paper
is written for those who like cross-disciplinarity both in mathematics and in physics.
Most of the results that we will give are already known by some people (sometimes by
many) but we hope that the references to be found here will help those who believe
that looking at a familiar object from a different point of view can be fruitful. Among
those topics that we looked at for some domains and have not found elsewhere, let us
mention the following: Poincare-Cartan momentum map and action of the conformal
group in the future tube taken as a phase-space (contrasted with the conformal group
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action on space-time), Riecmannian geometry of the future tube for its natural Kidhler
metric, generalization of wavelet analysis to arbitrary dimensions (relativistic music!)
in relation with Bergman kernels, Weyl-Berezin calculus on Cartan domains (coherent
states). Adopting a particular style for the present paper was not casy because we do
not know, a priori, the motivations of the potential recader; also, the main mathematical
object to be discussed here has many definitions; our task is precisely to try to present
them. Because of a personal prejudice (and because we want to go from the general to
the particular), we have decided to start from the geometry of complex manifolds and
then specialize to the case of homogeneous spaces for Lie groups; we get classical
domains in this way. Their relation to space-time (the Shilov boundary of such a
domain) or to phase-space, is discussed at a later stage.

2. Cartan Domains
2.1.  From complex manifolds to classical domains

2.1.1. Terminology and a few standard theorems on complex manifolds

Here, we suppose that the reader is familiar with differential and riemannian geo-
metry but not with complex geometry (cf. [34],[11], [8]). An almost complex manifold
is a manifold endowed with an almost complex structure. An almost complex structure
on a manifold M is a field of tensors J which, for every x in M is an endomorphism
of the tangent space T, M such that JZ = — 1. Alternatively, it can be considered as a
reduction of the frame bundle of M from the structure group GL(2n, R) to the group
GL(n,C). An almost complex manifold is automatically even dimensional and orient-
able (actually oriented). A map between two almost complex manifolds is almost
complex if its tangent intertwines the almost complex structures of the source and of
the target. A manifold is a complex manifold if it is defined by an atlas with holomor-
phic change of charts. An almost complex manifold is complex if the Nijenhuis bracket
N of the almost complex structure with itself vanishes, i.e. if the almost complex
structure is integrable. When N is not zero, it is called the Nijenhuis torsion of the
almost complex structure. An almost complex map between two complex manifolds
is automatically holomorphic. An almost complex structure allows one to define a
bi-graduation in the algebra of exterior forms (or more generally bundle-valued
p-forms) but, in a complex manifold, one can furthermore decompose the exterior
derivative d as d = 8 4+ 6 where 6 : AP4 — AP*14 and where 5 : A9 — AP If M is
a complex manifold and z!, ... z"(z" = x' + iy’) a chart on M, one introduces dz’ =
dx' + idy', dz' = dx' — idy" and 8/8z' = 1/2(8/dx' — i0/0y%), d/dz' = 1/2(3/ox" + i)/
Ay') that are bases for the co-tangent and tangent spaces T*(1,0), T*(0, 1), T.(1,0),
T.(0,1). An infinitesimal automorphism of an almost complex structure J is a vector
field X such that the Lic derivative of J with respect to X vanishes. The space of such
infinitesimal automorphisms is a Lie algebra A (possibly infinite dimensional). If X is
an infinitesimal automorphism, J X is not necessarily such, unless the almost complex
structure is actually complex; in this last case, the algebra A is a complex Lie algebra.
Also, in this case, if X is an infinitesimal automorphism, then Z = 1/2(X — iJX)isa



CONFORMAL THEORIFS 3

holomorphic vector field, i.e. a vector field of type (1,0) such that Zf is holomorphic
for every locally defined holomorphic function f; this also establishes an isomorphism
between the algebra of infinitesimal automorphisms and the algebra of holomorphic
vector fields. There is a similar result for anti-holomorphic vector fields. Notice that
two complex manifolds that are diffeomorphic (in the category of smooth manifolds)
are not necessarily holomorphically isomorphic (in the category of complex manifolds)

this is for example well known in the case of complex tori (quotient of C" by a lattice).
Complex and almost-complex manifolds can be compact or non-compact. We are
particularly interested in those manifolds that carry a coset space structure, i.e. that
are homogencous spaces for Lie groups of holomorphisms (we will always suppose
that they are connected). Let us give a few examples of compact manifolds that admit
a complex structure: the Grassmann manifold SU(p + q)/S(U(p) x U(q)) of p-planes
in C7*4 the complex tori—they are also complex Lie groups— the spheres S* (the
circle) and S? (notice that S°® is only almost-complex), the products of two odd-
dimensional spheres (in particular the Hopf manifolds $27*! x S'). Examples of non-
compact complex manifolds: C" itself, complex Lie groups (except complex tori),
Cartan classical domains (for instance SO(n,2)/SO(n) x S0O(2)). Many other examples
can be found in [22], [8], [65]. When an almost complex structure has been chosen,
any principal connection in the bundle of the corresponding complex linear frames is
calied an almost complex connection and the covariant derivative of J with respect to
any such connection vanishes automatically (this is the analogue of a corresponding
result for Riemannian connections compatible with a given metric structure). Also, in
Riemannian geometry, we know that, given a metric structure, i.e. a reduction of the
frame bundle from the real linear group to an orthogonal subgroup, there exists a very
special connection on the corresponding orthogonal irame bundle which is torsionless,
the Levi-Civita connection. Here, we have the same phenomena, in the sense that, given
an almost complex structure, 1.e. a bundle with structure group Gl(n, C), there is a very
special connection whose torsion T --as of a linear connection -is proportional to the
Niyjenhuis torsion N of the almost complex structure (actually N = 8T). In particular,
if the manifold is complex, N = 0 and one can find a complex connection with T =0
but conversely, if it is possible to find an almost complex connection with T = 0, one
can prove that N = 0. An (almost) complex manifold M is called (almost) Hermitian
if it is endowed with a Riemannian metric 4 invariant under the complex structure J,
Le if (JX,JY) = h(X,Y) for any vector fields X and Y. Metrics restrict the structure
group GI(2n. R) to the orthogonal group O(2n). In the same way Hermitian metrics are
in one-to-one correspondence with the reductions from the bundle of complex linear
frames (Gl(n, C)-frames) to the bundle of unitary frames (the structure group being the
unitary group U(n) = O(2n) n Gl(n, C)). From the Hermitian metric h, we can build a
Hermitian scalar product H as follows: H(X,Y) = /2(h(X.Y) — ih(JX,Y)). In any
(almost) complex manifold, we can associate to any symmetric tensor field b of type
(1. Iy a two-form f$ of type (1, 1) via the relation (X, Y) = b(J X, Y), and conversely. In
particular, on any (almost) Hermitian manifold we can define, from the metric h (a
symmetric tensor of type (1, 1)) a two-form w(X, Y) = h(J X, Y) called the Kédhler form
of the (almost) Hermitian structure or the “fundamental symplectic two-form™. Notice
that [Im H](X.Y) = —1/2m(X,Y). The almost complex structure is not, in general,



4 R. COQUEREAUX and A. JADCZYK

parallel with respect to the Riemannian connection defined by the Hermitian metric
h (i.e. the covariant derivative of J does not necessarily vanish); in other words,
although the bundle of frames can be reduced, the Riemannian connection does not
restrict in general. When it does, the Riemannian connection associated with h (the
Levi-Civita connection) is (almost) complex and the manifold itself is called a Kihler
manifold (it is then automatically complex since the corresponding torsions vanish).
A necessary and sufficient condition for M to be Kahler is N = 0 and dw = 0 (i.c. the
Kihler two-form  has to be closed). However, it can be that dw = 0 but that N is not
zero (so the manifold is almost complex, not complex); such manifolds are called almost
Kihler manifolds. To simplify the discussion we shall only discuss complex manifolds
from now on. The Kihler condition can be expressed locally in terms of a set of
differential equations that show that, locally, the metric h can be written as h,z = 0*f/
¢z*A2* where f'is some real-valued function called the Kihler potential. We will return
to this later. Also, one can prove that the Ricci tensor of a Kidhler manifold is invariant
under the complex structure: R(JX.JY)= R(X,Y). We set G =det(hy), Kjz=
— 0% log G/dz*Az* (Ricci tensor). Most reasonable complex manifold carry a Hermitian
structure (they only have to be paracompact, the constraint is the same as in Rieman-
nian geometry) but many Hermitian manifolds cannot carry a Kéhler structure (from
the vanishing of dw, one can show that a necessary condition is that even dimensional
Betti numbers vanish); for instance, products of two odd-dimensional spheres cannot
be given a Kihler structure (besides S' x S'). One can find, however, many examples
of Kihler manifolds. Examples of compact manifolds admitting a Kéhler structure:
Riemann surfaces, complex tori or complex grassmannian. In the non-compact case,
we shall be particularly interested in the fact that arbitrary bounded domains (not
closed) in C" can be given a Kdhler metric by the so-called Bergman construction. We
will see many explicit examples later. This important construction is actually valid for
an arbitrary complex manifold (not necessarily a bounded domain of C") but leads to
a symmetric tensor of type (I, 1) which is not necessarily a metric in the sense that it
may be degenerated. The construction goes as follows (we only sketch this method
here since we will return to it in a forthcoming section). One starts with an n-
dimensional complex manifold % and consider the Hilbert space H of holomorphic
n-forms ¢ which are square integrable. Taking any orthonormal basis ¢, ¢,, ... € H,
one builds K(z,&) = i" T@(z) A #(&), then K(z,Z) is a form of degree (n, n) called the
Bergman form and is independent of the choice of the basis. Taking a complex local
coordinate system z', ..., z" in M, we writec K(z,7) = i"k(z,Z)dz' A ...dz" A dZ' A
...dz" where k is a non-negative “function” called the Bergman kernel (actually it is
not a function but a scalar density since its definition depends upon the chosen chart:
one gets k,(z.z) = |[JY|*ky(z,2) where JY is the Jacobian associated to the change of
charts). From now on we shall suppose that the complex manifold & is such that its
Bergman form vanishes nowhere; such a manifold is called a “normal” complex
manifold. Then we set 1,5 = 0% log k/dz*@z* and we get a symmetric (I, 1) tensor ¢(X, Y)
called the Bergman tensor which is compatible with J, which is not necessarily positive
definite and whose associated (1, 1) real 2-form (X, Y) = t(JX, Y)—which has no
name is automatically closed. Let h be a Hermitian metric on &, then since both the
Bergman form and the volume element of the metric h are forms of degree (n. n), they
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differ multiplicatively by a real function 4; of course, Bergman kernel k& of & and
square-root of the determinant G of h are related in the same way. In the particular
case where  is a bounded domain of C" (i.e. it is open and connected), it happens that
the tensor ¢ is positive-definite. Since ¢ is positive definite and t is closed, the Bergman
tensor ¢ can be considered as a Hermitian metric for & which is Kihler and called “the
Bergman metric of the domain . In this last case the Kahler potential f coincides
with the Bergman kernel k. Then, previous results imply that Ricci tensor and metric
are proportional which means that the Bergman metric of a bounded domain of C"is
automatically an Einstein metric.

2.1.2.  Some results on homogeneous complex manifolds

We now continue our summary of standard results in the case where the complex
manifold & is homogeneous, i.c. when the group G of holomorphic transformations
of & is transitive on % Such a manifold can therefore be written as a coset space G/K
where K is a Lie subgroup of . The theory now splits into two: the case where & is
compact and the case where it is not. If & is compact and because of the transitivity
of the group of transformation, a holomorphic n-form either vanishes nowhere or is
zero everywhere; from that, one can show that either the complex manifold is not
normal but the Bergman form is zero everywhere or it is normal but the Bergman
tensor ¢ is zero [40]. We are mainly interested here in applications of the Bergman
construction where neither k nor  are zero, so we leave here the theory of compact
homogeneous manifolds. Returning to non-compact homogeneous Hermitian mani-
folds, we then restrict our attention to those which are symmetric (as homogeneous
spaces G/K)- so, they are necessarily simply connected—- but then a theorem [22]
states that such homogeneous spaces equipped with the metric inherited from the
Killing form of the algebra Lie(G) are holomorphically difftfomorphic with bounded
symmetric domains of C" equipped with their Bergman metric -- a domain is symmetric
iff each point in & is an isolated fixed point of an involutive holomorphism (holo-
morphic diffeomorphism) of & They are therefore automatically Kihler. But simply
connected Kahler manifolds admit a De Rham decomposition into a product of
irreducible complex manifolds which are Kidhler; it is then natural to restrict our
attention further to the case of irreducible Hermitian symmetric spaces of the non-
compact type. These spaces will only be called “Cartan classical domains™ in the sequel
or just “Cartan domains”, the terminology coming from the holomorphic diffeo-
morphism already mentioned previously between abstract homogeneous spaces for
Lie groups and particular domains of C". Such classical domains can be classified for
instance by using the classilication of Lie groups and this is the starting point that
we will choose. We will mention later other constructions (for instance as complex
domains!) for those classical domains that are of particular interest for us. The classi-
fication of irreducible Hermitian symmetric spaces of non-compact type can be found
for instance in [22], [55] but it is unfortunate that there is no standard terminology.
Let us only mention that there are four series of classical domains that are quotients
of non-compact groups by compact groups that we will call «(p,q) = SU(p,q)/
S(U(p) x U(q)), A(n) = SO*(2n)/U(n).€(n) = Sp(2n, R)/U (n), #(n) = SO(n,2)/SO(n) x
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SO(2) and two “exceptional” ones, namely E,/SO(10) x U(l)and E,/E, x U(1). We
will also write .«/(n) = .o/(n, n). Members of the .«/(n) families are 2n?-dimensional and
often called “non-compact complex grassmannians”™, those of the (n) family are called
“Siegel half-planes”. Members of the %(n) family are 2n-dimensional and they are also
called “Lie balls” for reasons discussed later (we will omit parenthesis in the sequel).
Low dimensional isomorphism of Lie groups belonging to different series imply
isomorphisms between the lowest members of the above families. For instance, the
two-dimensional ¥(1) = SO(1,2)/SO(2) = SL(2,R)/SO(2) = /(1) = U(1,1)/U(l) =
%(1) = Sp(2, R)/U(1)is the familiar unit disk, a model for the geometry of Lobatchevski
(it can also be seen as one of two sheets hyperboloid or as the Poincare upper
half-plane); the four-dimensional domain 2(2) = SO(2,2)/S0O(2) x SO(2) is the only
one which is not irreducible (it should not appear in the list!) since it is isomorphic
with (1) x %(1)—this comes from the local isomorphism between SO(4)and SU (2) x
SU(2); the six-dimensional domain %(3) = S0O(3, 2)/SO(3) x SO(2) coincides with €(2),
the eight-dimensional domain %(4) = S0(4,2)/S0O(4) x SO(2) coincides with the do-
main .o/(2) = SU(2,2)/S(U(2) x U(2))—this comes from the local isomorphism be-
tween SO(6) and SU(4). Finally, we have 2(6) = 4(4) and «/(3, 1) = %(3). There are
no more accidental isomorphisms. We will be mainly interested in the study of the
o/ (n) and &(n) series and ail our explicit examples will involve either .&/(1) = (1), i.e.
the unit disk (because it is easy to visualize and because it is used in wavelet analysis)
or .&/(2) = 2(4), i.e. the eight-dimensional Lie ball because of its direct relation with
space-time geometry. Notice that there are several possible “generalizations™ of the
unit disk: as Lie balls, as non-compact complex grassmannian or as Siegel half-planes.
We will give later several realizations of these Cartan domains. Before ending this
section, we would like to mention that there are also non-compact pseudo-Hermitian
irreducible symmetric spaces (they are pseudo-Riemannian manifolds) on which little
is known but where many of the previous and following results could possibly be
generalized (cf. [59]).

2.2. Boundaries of Cartan domains

2.2.1. Classical domains as differentiable manifolds

We already know that Cartan classical domains are diffeomorphic with simply
connected and connected bounded open subspaces of C" (although bounded, classical
domains are not compact since not closed in C"). They are therefore difffomorphic
(not holomorphically) with R*" and are therefore 2n-dimensional manifolds without
boundary, in the sense that every point posesses a neighborhood diffeomorphic with
an open set of R*". For instance the open unit disk &1 has clearly no boundary.

2.2.2. Boundaries of Cartan classical domains as subspaces of C"

However, if we realize an abstract Cartan domain as a topological subspace of C",
it has a topological boundary (the complement of its interior in its closure). For
instance, the topological boundary of the open disk in C is the circle and the topological
boundary of &4 in R® is diffeomorphic with a standard seven-sphere (%4 is an open
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ball for a particular distance that we shall introduce later). However, such a definition
1s not very satisfactory because it relies on a given realization of the Cartan domain—
namely its embedding in C".

2.2.3.  Boundaries via the Borel-Harish-Chandra embedding

In order to give an abstract definition for the “boundary” of a Cartan domain defined
as a homogeneous space of Lie groups, one can use the Borel embedding (also called
the Harish-Chandra embedding). The observation is that, if 2 = G/K, one can embed
G into the complex group G¢, K into the complex group K and finally the non-compact
quotient G/K into the compact quotient G°/K* which happens to be isomorphic with
the quotient G/K where G is the corresponding real compact Lie group (K was already
compact). In this way one embeds each classical domain (an irreducible Hermitian
symmetric space of non-compact type) into a corresponding irreducible Hermitian
space of compact type, for instance the non-compact space 21 = SO(1, 2)/SO(2) into
the compact space S* = SO(3)/S0(2), i.e. 21 is identified with the lowest open hemi-
sphere of a two-dimensional sphere. The boundary of 21 in S? is then an equatorial
circle. In the same way, the eight-dimensional Lie ball %(4) = SO(4,2)/SO(4) x SO(2)
1s identified with a subspace of the compact grassmannian SO(6)/S0O(4) x SO(2) =
SU(4)/S(U(2) x SU(2)). The topological boundary of the Cartan domain embedded
as previously in its dual compact space is called the “weak boundary” of the domain.
From the fact that K is the isotropy group (the little group) of the origin of ¥ = G/K—
a point belonging to %, not to its weak boundary—and since 2 is embeded in G/K,
it is clear that K acts also on the weak boundary! But, in general, K has no reason to
be transitive on it (it is transitive in the case of the unit disk Z1), so the boundary will
be stratified under the action of K and one can study the orbit structure of this
stratification [65]. In the case of the domain @n, of dimension 2a, one of the strata
has one orbit only and it has a dimension #; this orbit is a compact manifold called
the Shilov boundary %n of the Cartan domain %n. More generally, for all classical
domains, it happens that one of the strata consists of one orbit only and that this orbit
has a dimension precisely equal to half the dimension of the domain itself. It is the
Shilov boundary of the domain. When represented as a bounded domain of C", the
Shilov boundary can be given an alternative definition. Let us recall the more general
(analytic) definition of a Shilov boundary. Let .o/ be a set of (non-constant) holomor-
phic functions in a bounded domain % of C" and continuous on % Then & = 09 is
the smallest closed subset of the boundary 0% such that every f e .o/ reaches its
maximum (in module) on % In the case of Z1, one gets %1 = S'. In the case of
4, one gets 4 = S§° Xz, S'. More generally, in the case of &n, one gets ¥n =
$"7! x,, 8" (so that %n is a higher dimensional analogue of the Klein bottle).

2.24.  Geometry on the Shilov boundary of Cartan domains

We know that Cartan domains are Riemannian manifolds for their Kihler metric.
This metric, of course does not coincide with the induced metric that they would
acquire from their embedding into C". It is natural to try to define a metric structure
on the Shilov boundary by taking some limit of the Riemannian metric in the domain
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itsclf; however such a limit is singular (for instance the Lobatchevski distance in the
upper half-plane blows up when we approach the real line). What is remarkable is that
it 1s nevertheless possible to define unambiguously a related structure on the Shilov
boundary: it is a conformal Lorentzian structure. For instance, if we start with a
Riemannian metric on 4 invariant under the conformal group SO(4, 2) and we go to
the Shilov boundary &4, we do not obtain an invariant metric but a conformal class
of Lorentzian metrics. This is almost intuitive since it is well-known that the conformal
groupdoes not leave the Minkowski metric invariant but modifies it by an x-dependent
factor. We can choose then a unique —up to constant scale - flat Minkowski metric
from this class [ 19].

2.3. Global and local charts on Cartan domains

Since Cartan domains are 2n-dimensional manifolds that can be represented as open
subsets of C", they admit a global complex chart, namely, the one coming from such
an embedding. However, there are other charts that usually do not cover the whole of
the domain but are nevertheless interesting. For instance, there is a global chart sending
the “abstract” domain ! = SI(2, R)/U(1) to the unit disk of the complex plane, but
the Cayley transformation is a holomorphic transformation of C sending the unit disk
to the upper half-plane (and its Shilov boundary-—the circle—to the real line). This
transformation is however singular on the boundary and this last chart does not cover
the whole of %1 since one of its points is sent to infinity. The disk is called a bounded
realization of %1 and the upper half-plane, an unbounded realization of 1. One also
says that the disk is a “compactified upper half-plane” (and the circle is a “compactified
real line”). In the same way, there exist higher dimensional analogues of the Cayley
transformation for the other Cartan domains [36]. This transformation can be con-
sidered as a bi-holomorphic change of charts mapping a bounded realization to an
unbounded one (or the opposite); it is singular on the boundary. We will study this
transformation in the case of %n and .«/n but we can already give the following result:
the Cayley transformation maps the Lie ball ¥4 to the so-called “Cartan tube” 74
(mathematically isomorphic with the “forward tube” of particle physicists): it is the
space of all z = x + iy such that x € R* and y e R* with the constraint that y lies in
the forward light cone (y3 — y3 — y3 — y3 > 0). Under this transformation, the “finite
part” of the Shilov boundary S* x, S' of %4 is mapped onto R* (which, topologically
can be identified with Minkowski space-time M). Independently of any relation with
Cartan domains or with Shilov boundaries, the manifold $* x, S' is often called
“compactified space-time” in the physical literature. It can be obtained from usual
Minkowski space-time by adding a cone at infinity.

2.4. Cayley transformation for the A and & series
24.1. On.o/l =71
The Cayley transformation in C, z € #1 - we .7 1 where

—i(z + 1)
w=

(z—1
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associates the upper half-planc .7 1 = {w € C.Im(w) > 0} to the unit disk z € #1 of C.
The inverse transformation is

_ iw—1)
weZloz= e,
(w+1)

242 On “n

The generalized Cayley transform t goes [rom the bounded realization of the domain

‘n to the Cartan tube .7 n(the forward tube). Setting z = (z4,2,...,2,-,) € ¥n and
W= (Wy, W, ..., W, ) E T n wegetw, = —2iz, /2, wy= —i+ 2(zy — i)/Z where Z =
(2o — ) + 23 4+ z2 + --- + z2_|. The inverse transformation is z, = — 2iw, /W, z, =

i—2(w, + i)W where W = —(w, + i)> + wi + wi + --- + w?_,. Notice that W =
—47 ' and that the Jacobian of the transformation is

D(Z|7;27-~.,Zn) _ —2"(41.)"+12‘n
Dw,,w,y,...,w,) '

2.43. On.o/n

We suppose here .o/n given by a bounded realization in terms of matrices Z
parametrizing the quotient .«/(n) = SU(n,n)/S(U(n) x U(n)). The Cayley transforma-
tion, mapping this bounded realization to an unbounded one (called 7 n), is given as
follows. Z -+ W where W = W(Z) = i(1 — Z)(1 + Z)'. The inverse mapping is Z =
ZW)y= (I —iW) '(1 +iW). In the case n =2, the Lebesgue measures on the
bounded realization |dZ| = INd Re(z)dIm(z) and on the unbounded realization
|dW| = Ild Re(w)d Im(w) are connected by a Jacobian |dZ| = J, |dW| with J, =
274 det(1 + Z)|® = 2'?|det(l — iW)"®. Similarly, the K = SO(4) x SO(2)-invariant
measure |du| on the bounded realization of the Shilov boundary (compactified space-
timc) is related to the Poincare-invariant measure on unbounded space-time |d*u| =
|d Re W| by |du| = J,|d*u| with J, = (2/m)3|det(1 — iU)|*. In the case n = 1, besides
unimportant constant factors, the Jacobians are J, = |1 — iw| 2 = (1 + iw")7}(1 —
iwyland J, = |1 —iu| 2 = (1 + u?) 2.

2.5. Matrix realizations of the Cartan domains
2.5.1. The .o/(n) series
We define the group G = SU(n, n) as follows. We consider complex 2n x 2n matrices

A B . .
M= (C D> where A, B, C, D are n x n submatrices. M is assumed to satisfy the

-1 0
constraint M*H = HM ™! with H = ( ).The maximal compact subgroup K =

0 1
0 . .
with the constraint det(K | K,) = |

2
and K,, K, € U(n). Elements of the quotient G/K can be considered as 2n x 2n

K
S(U(n) x U(n)) consists of the matrices( 01



10 R COQUEREAUX and AL JADCZYK

complex matrices Z such that 1 — Z"Z > 0. The group G acts on Z by Z » 27 =
A B .
(AZ + B)(CZ + D) ' whcre (C D) € G. The Shilov boundary of .&/(n) is .</(n) =

U(n) = SU(n) x,, U(1). In particular, we recover the fact that .o/(2) = U(2) =
SUQ) x,, U1y =8> x, S"

2.5.2.  The D(n) series

The reader may, for instance, refer to [10].

3. Geometrical Aspects of the Bergman and Szegé Kernels
3.1. General vector bundles above Cartan domains

Let & be a Cartan domain, for instance 4. Then, as a homogeneous space G/K, it
is automatically the base of a principal bundle whose total space is G and the fiber is
K. Complex-valued functions over the domain are a particular example of sections of
vector bundles that one can construct (those associated with the trivial representation
of the structure group K). More general vector or tensor valued functions (or even
p-forms) can be constructed by choosing particular representations of the structure
group K, which, in the case of %4 is SO(4) x SO(2) which, locally, is the same that
SU(2) x SU(2y x U(1). Representations of this “little” group are characterized by an
integral label n and two spin labels j,, j,. These vector bundles are equivariant under
the action of the conformal group G itself and the spaces of sections of these bundles
provide representation spaces for G. It is then possible to define a scalar product in
such a space of sections and one can then look for subspaces of holomorphic (or
antiholomorphic), square-integrable sections .#,, ; ; carrying an irreducible unitary
representation of the conformal group. Such spaces can, of course, be zero for some
values of (p, j,, j,)- For instance, it is shown, in [56], that, if j, = j, = 0, the spaces
H,(#4) reduce to zero if p < 2. It is possible to define a Bergman kernel for each of
these spaces and to investigate the (distributional) boundary values of those sections
on the Shilov boundary. It should even be possible to generalize the theory further
and consider spinor fields on such domains. Let us mention here that the theory of
harmonicity cells recalled at the end of this article in relation with functions (and the
Laplace operator) can also be developed for more general classes of pseudo-differential
operators [39]. We will restrict our study here to a particular class of vector bundles:
the “densities of conformal weight I™.

3.2. The spaces H*(%) and their associated kernels

As already mentioned, the frame bundle of a complex manifold is naturally reduced
from GL(2n, R) to GL(n, C)-bundle of frames of type (1,0). A holomorphic density ¢ of
weight [ (/ integer) is a holomorphic section of the associated bundle corresponding to
the |-dimensional representation of GL(n, () : GL(n, C) € Ar>det(A). Alternatively, ¢
can be (in general, locally) defined as a holomorphic function in each coordinate system
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. az\ |
szt = Q(Z) = {det(j )] D(2).
oz')

In particular holomorphic densities ol weight O are just holomorphic functions, while
densities of weight 1 arc holomorphic n-forms. Indeed an n- form ¢ of type (1,0) can
be uniquely be written as

with the rule

¢ = D(z)d"z = ¥'(z')d"z’

which implies the transformation rule

() = [det (;)]cp()

Anti-holomorphic densities of weight [ could be defined similarly. Using quite a
different language, the properties of these densities, for the case of the domain D1, have
been investigated in an article by [5], and [62].

Assume now that the complex manifold & admits a coordinate system that maps it
ontlo a bounded domain in C". The natural Hilbert space #%(%) associated to &
consists of holomorphic densities of weight 1 which are square integrable w.r.t. the
measure d"zd"z of C". Notice that the scalar product in #2(2)

() = Jcb(z)‘l’(z)duol(z) ( = J¢(z) d"z\W(z) d"z)

is independent of the coordinate system. The measure dvol(z) is the euclidean mea-
sure on (" and does not coincide with the intrinsic measure of the domain du(z) =
k(z, Z)dvol(z) associated with its Bergman metric. The Bergman kernel function of %
is then defined as

k(z,w) = 24, (2)¢hn(w)
where y, is any orthonormal basis in #'%(%). The kernel k is a holomorphic (resp.

anti-holomorphic) density of weight 1 w.r.t. z (resp. w). It has the reproducing property

flz)= j S(E)k(z, E)dvol(E).

Notice that if we set z = w, then K(z,z) becomes an (n, n)-form. Given the Bergman
kernels for classical domains we can introduce now a family of (possibly trivial,
ie. = [0}) Hilbert space #}(%) consisting of holomorphic densities of weight /,
square integrable w.r.t. the measure du,(z) = k(z,2)! 'dvol(z) = k(z,Z) 'du{z). The
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scalar product

d)(z"l’(
k(z,z)

(@.4) = f‘D(Z)‘V(Z) du(z) = f ,Z)JN(Z)

is again independent of the coordinate system. (One can define also #;%(%) for non-
integer /, but then, for topologically non-trivial &, it can depend on coordinates,
because of the problems with definition of a holomorphic density of non-integer
weight). Noticc that the space #;(#) of square-integrable functions on & for the
Bergman measure itself is usually trivial. Each .#;? carries a natural representation U,
of the group G of holomorphism of #:

A=l 1
oo = ae ()] oo,

g1z

For & = G/K = §0(n,2)/SO(n) x SO(2) in the bounded domain realization the
action of the SO(2) subgroup of K is just z+— e’?z. The Jacobian for this action is (¢“%)",
n being the complex dimension of %. It follows that the spaces #;%(%) can be identified
with the spaces of holomorphic sections of the bundle associated to G -- G/K via the
representation ' e'?% of K, with p = nl. This shows in particular that the structure
group of the corresponding principal bundle (only the U(1) part of K matters here) is
either U(1) itself (in which case p has to be an integer), or a quotient of U(1) by a Z,,
(in which casc p is a multiple of m) or even a cover of U(1) by a subgroup (in which
case p can be non-integer). There are no problems related to extensions of the structure
group here, since the manifolds we study are topologically trivial. The values of [ for
which .#,% is not zero may have some physical interpretation and this set is not
necessarily an interval (this is discussed in [6]). Also, the value of / is related to what
is called the canonical dimension of the fields in Lagrangian field theories. Each space
#, has its reproducing Bergman kernel k!(z,z) = k(z,z).

3.3. Coherent states on complex manifolds and the Bergman kernels

All spaces .#,%(<), & a bounded domain, have associated natural families of coherent
states (the following may be considered as a definition). Indeed, for each & € & the
evaluation function ®— ®(&) vanishes on a hyperplane and is continuous. It follows
that there exists a vector e, in #,%(%), unique up to a factor, which is L to all ¥ such
that W(&) = 0. In each coordinate system {z} there is a natural choice of e,:

The coherent states |£) (of unit norm) differ from e, just by a normalization factor. We
can think of these coherent states on bounded domains as generalizations of Bergman
coherent states on C (or C").



CONLORMAL THFORIFS 13

3.4. Classical domains and the Szego kernel

The Shilov boundary @ for a bounded domain & is defined as a minimal subset of
¢ which has the property that every bounded holomorphic function on & reaches
its maximum at some point of ¢. This property characterizes & uniquely. In case of
bounded symmetric domain G/K, its Shilov boundary is a homogeneous space not
only of G but also of K. By a general theorem of Gleason, holomorphic bounded
functions in ¢ admit a representation of the form

Yiz) = J Y (O)s, (2,0 dp(l),
7

where p is 4 measure on &, and s,(z.{) is holomorphic in z and integrable with respect
to s in . The kernel function s,(z,{) is called the Szego kernel of the domain. It can
be computed as

su(z:u) = Y pl2)ha(u),

for z, u € &, where ¥,(z) is a basis of holomorphic functions on & which is p-ortho-
normal:

ﬁ YnlOY(O) du(l) = Sy -

When g is the measure induced by the Euclidean measure of a simply connected
domain there is usually a simple relation between the Szegd and the Bergman kernel
of the domain:

One can generalize the concept of the Szegé kernel so as to describe more general
spaccs of not necessarily bounded holomorphic functions, for instance the spaces #>.
It is important to remember that the Szegd kernel depends on the measure u that one
is using at the Shilov boundary. For instance in the case of &4 in the Cartan tube
realization there are two natural measures on the finite part of the Shilov boundary:
the measure

du = cte x d*x/((1 + (r — 02)*(1 + ((r + 1?)?),

which is the unique invariant measure for the group SO(4) x SO(2)— the stability
group of &4; the other is the Lebesgue measure d*x, invariant up to seale under the
stability group of a distinguished point called oc. To relate the two Szegd kernels one
has to use the corresponding Radon-Nikodym derivative.
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35. The case of 71 and /4

3.5.1.  Bergman kernels

In the case of 71 the Bergman kernel is given by

k(zy.z;) = (1/m)

(1 —z2,7,)?

in the bounded representation (the disk) and

k(wy, wy) = (1/16)(1/2i) - -5
(w, — wy)
in the unbounded one (upper half-plane).

In the case of ¥4 or more generally on the Lie ball %n we have correspondingly
k(z,.z,) = d /(1 + z}z3 — 2z,Z,)" in the bounded domain realization and k(w,, w,) =
cte/[(w, — w,)*]"in the tube realization (as usual, in the tube realization, the “square”
is computed with the Lorentzian metric). The Bergman constant d, is equal to the
inverse of the volume of the corresponding domain. Namely d,, = 2" 'n!/n".

In the case of Cartan domains .o/n, we have the expression k(z,,z,) = a,[det(1 —
Z,7Z,)]*" for the bounded realization and k(w,,w,) = (1/16)det[(—i/2)(w, — w,)] *".
As already mentioned several times, the .72 and %4 cases coincide (in which case
ay = 12/n*) [56].

3.5.2.  Szeyé kernels

In the case of #1 the Szego kernel is given by $(Z, x) = ¢, /(1 — ZX) in the bounded
representation (x € ', Z € Z1)and s(W,u) = ¢, /(u — W) in the unbounded one (u € R,
W e {upper half plane}). The relation between both expressions is the following.
s(Z,x) = (1 — iW)(1 + iu)s(W,u). Indeed, the relation between the measures, in the
domain itself and on its Shilov boundary, in both realizations are du = (1 + iu)~"'-
(I —iwy 'duand dZ = (1 + iW*) 1 (1 —iW) HdW.

In the case of ¥4 or more generally Zn, we have correspondingly s(xe?,Z) =
co/l(x = e¥Z)(x + ¢*Z)]"* in the bounded realization—here xe'’ € §"7!' x, S', ie.
xeS" ' = R", [24], and s(u, W) = ¢,/[(u — W)*]"? in the tube realization [56]. The
Szego coeflicient ¢, is equal to the inverse of the volume of the Shilov boundary. It is
given by ¢, = I'(n/2)/2n"?*1).

3.6. Square-integrable functions, distributions and hyperfunctions on the Shilov
boundary

The correspondence between “functions™ on the domain 2 and “functions” on its
Shilov boundary % can be studied in both ways. Elements of .#;* defined in the domain
usually approach a distribution when their argument tends to the Shilov boundary.
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Fora given!, only the elements of a (small) subspace of H? approach a square integrable
function delined on the Shilov boundary for the measure |dy| (invariant under K when
we write  as K/H). Conversely, elements of this subspace can be gotten [rom (analytic)
clements of L%(%) by means of the Szegd kernel. More generally, distributions on
 can be extended via the Szegd kernel —to elements of holomorphic (or anti-
holomorphic) elements of .#,%, the valuc of ! depending actually upon the kind of
singularity of the distribution. If one chooses an unbounded realization rather than a
bounded one, one usually takes tempered distributions on the Shilov boundary. The
holomorphic extension of (tempered) distributions on space-time into the future tube
and generalization of such results to the n-point functions of quantum field theory has
been studied by a whole generation of particle physicists and field theorists. Let us
only mention the book [61]. In the case of Lie balls #n, the correspondence between
spaces of distributions-dual spaces of C*(%), hyperfunctions-dual space of the space
of real analytic functions in & and their extensions to the domain 2* is studied in [56]
[46].

3.7. One-dimensional wavelets and relativistic wavelets

The following discussion of the wavelet transform is based on an example taken
from [55]. The affine group L = R x R,

(a,b)(x,y) = (ax,ay + b)
acts on L?(R, dp),
(U(a’ b)lﬁ)([)) — al/4e*ibp2/2lp(al/2p)

by unitary transformations. This representation has two irreducible components corre-
sponding to odd and even functions y(p). Let us consider the odd case. The analyzing
wavelct is

Bo(p) = Peipz/z-

By definition, it is such that

JIU(Q)¢0’¢0|2 du(g) < o,
du(g) being the left-invariant measure on the—non-unimodular-—affine group L. The
wavelet transform of y(p):
1
\/"¢

x f(z), where f(z) ~ jpe"”’zx//(p)dp is a function holomorphic

Lo(y) = (Ula,b)gy, ¥)

is then of the form ¢**
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in the upper half-plane Im(z) > 0, and square integrable with respect to the measure
Im(z)'? dz dz. The Bergman kernel k(z,u) of the upper half-plane being ~ 1/(z — )3,
the invariant measure is Im(z)” 2 dz dz. Thus the holomorphic factors of the wavelet
transform form up the Hilbert space #y,. Notice that the holomorphic wavelet
transform of the analyzing wavelet itself is

1

2 i(z+i)p?/2
jp P (z +10)%?

This coincides with the coherent state e, (2) ~ 1/(z + i)** of #37, at the origin O = 0 + i.
A similar discussion of the odd case gives weight k = 5/4. Notice that the coherent
state at z is defined here by the property of being orthogonal to all holomorphic
functions in the Hilbert space that vanish at z. The natural action of the affine group
on the upper half-plane extends naturally to the group SL(2,R) =~ SU(1,1) ~ SO(1,2)
(up to discrete factors), which is the conformal group of the time axis R. After Cayley
transform the affine subgroup becomes the stability subgroup of co (cf. 5.2) in the Shilov
boundary. The holomorphic factor of the wavelet transform can be obtained via the
Szegd kernel from its boundary limit. The only role of the (non-holomorphic) factor
¢4 in the wavelet transform is to ensure that the transformation is an isometry from
#%(R,dp) to £*(L,du). 1t follows that the essential part of the wavelet transform that
contains information about scaling behaviour of the analyzed signal is contained in
the Szego transform. This observation opens the way for a natural generalization of
the wavelet transform to higher dimensions. These can be either of time character, or
space-time character. In particular the relativistic wavelet transform analyzes ficlds on
space-time in terms of coherent states from Hilbert spaces of holomorphic functions
on the domain D, = S0(4,2)/SO(4) x SO(2). The affine group is replaced here by the
semi-direct product of the Poincaré group E(3, 1) and dilations R* (it contains transla-
tions, dilations, and Lorentz rotations). A possible extra inversion would replace
translations with special conformal transformations, while the extra Fourier transform
will replace positions with momenta. The relevant Hilbert spaces are naturally labeled
by the representations of the stability group SO(4) x SO(2). When applied to scalar
fields only the SO(2) is relevant. It should be however kept in mind that in higher
dimensions the wavelet transform can apply to vector and tensor-valued signals as well.

Notice that the upper half-plane <&, can be identified with the group L itself.
However, in higher dimensions, one cannot identify the domain &, with the semi-direct
product of the Poincare group E(n — 1, 1) and dilations (for instance D, has dimension
8, and the corresponding group has dimension 11 = (6 + 4) + . For this reason, the
holomorphic wavelet transform can be defined (as in [16]) in terms of unitary repre-
sentations of the non-unimodular group L, or, as here, as an analytic extension from
&/’2((;') to a space .#,%(&) where % is the Shilov boundary of %. Both definitions are
different but directly related (they agree in the case of 21). Notice that one can “correct”
the holomorphic transform by a non-holomorphic factor in such a way that the
transformation becomes an isometry.

It is traditional in physics and in particular in space-time physics to analyse signals
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(for instance clementary particles) in Fouricr space. However, like in music, there are
no “perfcet”, infinitely lasting sounds - -particles are crcated and destroyed. Relativistic
wavclet transforms could provide a way to analyse signals localized in space and time.

4. Lie Balls and the Action of the Conformal Group

Here, we analyse in more detail the group theoretical aspects of the conformal group
SO(4,2) acting on %4 or on its Shilov boundary. Everything can be generalized to
other members of the #n serics in a straightforward way and, with proper carc, to the
other Cartan domains. We also review what happens in the n = | case (the upper
half-planc) since the situation therc is rather degenerated.

4.1.  The conformal group and its subgroups

In an n-dimcnsional real vector space endowed with a non-degenerated pseudo-
euclidean scalar product of signature (p,q), n = p + ¢, conformal transformations are
defined as transformations that preserve the angles, not the scalar product itself. One
can show that this group of transformations is finite dimensional as soon as n > 2 and
1s isomorphic with O(p + 1,q + 1). In the case of a Lorentzian metric of signature (3, 1),
we get 0(4, 2). It acts via a composition of rotations (also Lorentz rotations, i.e. boosts),
translations, dilations and inversion with respect to the origin. The fifteen dimensional
group SO(4,2) itself does not contain the inversion and is generated by 6 rotations (3
pure rotations and 3 boosts), 4 translations, 4 special-conformal translations (obtained
by composing an inversion, a translation and again an inversion) and the dilation.
However, its action is singular (see explicit formulae below) on Minkowski space-time;
we know that it acts however in 4 non-singular way-—but non-linearly—on com-
pactified Minkowski, i.c. on the Shilov boundary of ¥4. We know that Zn = G/K
where G = SO(n,2) and K = SO(n) x SO(2) is the little group of the origin o of the
domain; in the same way, we can write the compactified Minkowski Zn = G/L where
L is the little group of a chosen point on @n called co. It is clear that this little group
L is made of rotations, translations and dilations. More precisely L is the semi-direct
product of the Poincare subgroup times dilations (the Poincare subgroup being itself
the semi-direct product of the Lorentz group times translations). L is the direct
analogue of the “ax + b group that appears in the geometry of the upper half-plane
or its boundary, the real line. However we know that K also acts transitively on the
Shilov boundary %n; this comes from the general theory (Harish-Chandra realization)
but also from the obvious fact that K = SO(n) x SO(2) acts in an obvious way on
$"' x §'. So we can write 9n = K/H where H = SO(n — 1). The case n = 4 is itself
rather special since S° possesses a group structure (S? = SU(2)) and that SO(4)is locally
isomorphic to SU(2) x SU(2) to that 94 = SO(4) x SO(2)/SO(3); the Lie algebra of
this SO(3) subgroup is here the diagonal Lie subalgebra of Lie(SU(2) x SU(2)). In all
cases, we can write the domain itself & = G/K and its Shilov boundary D = G/L = K/H
where K and H are compact Lie groups but G and L are not compact and L itself not
even semi-simple.
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4.2. Group theoretical aspects of the unit disk

In this case the situation is slightly degenerated. We know that & = G/K with
G = 50(1,2) = SI(2,R)and K = SO(2) = U(1). The Shilov boundaryis S° x, §' = §'
(since S° = Z,) but §' = G/L where L is the “ax + b” group (non-unimodular) and
also S' = K/H where H = 1. Notice that “space-time” here is just the time axis and
that the unbounded realization of this domain is indeed defined by y > 0 so that we
get the upper half-plane as the inside of the light cone (the forward tube). A particular
feature of this one-dimensional case is that the domain itself (think of it as the upper
half-plane) can be identified with the subgroup of the affine group L = “ax + b” with
positive dilation parameter a > 0. This plays an important role in the theory of
wavelets.

4.3. The Lie algebra of SO(4,2)

Let J, y denote the generators of the Lie algebra of SO(4,2). They satisly the
following commutation relations

Wano Ik p] = duxdne + InpIux — InxIur — Gurdnx

where the indices run from 0 to 6, i.e. M € {0,1,2,3,4,5,6} and g,y denotes a (6 x 6)
bilinear symmetric form with signature (+ — ——+ —). In order to make the link with
the conventional generators for the Poincare group, it is convenient to set J,s + J,6 =
— 2K, (conformal translations) J,,s — J, = — P, (translations) Js, = D (dilation). Then,
commutation relations read

u

[‘];Av"]/)a] = - y,up‘]vrr - gvn'lwr + g‘lﬂJV[) + gvp‘];ur
[‘]uvv P/)] = —gprv + gvau

[P

n

P]1=0

[P

[

K,] = —2J,, + 2Dy,
[Kpdu]l =9,,K, —9,,K,
[P,,D] =P,
[K,.D]= —K,
[K,.K,]=0

[J,,,D]=0

uvo
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where 0 € {0, 1,2, 3}. [tis also convenient to introduce generators for the 3-dimensional
rotations J; = 1/2¢,,J;, and for the Lorentz boosts N, = J,,, i€ {1,2,3}. G = S0(4,2)
is then generated by the fifteen generators, J, N, P,, K, D. The domain % is G/K
where the Lie algebra of the stabilizer of the origin is LieK = Lie(SO(4) x SO(2)) =
Lie(SO(3)) + Lie(SO(3)) + Lie(U(1))is generated by R=J + (P — K), L =J — (P —
K)and P, + K. Writing Lie(G) = Lie(K) + T(%), we see that the tangent space T(Z)
to & atthe origin is generated by the 8 generators N, P + K, P, — K,and &. A maximal
set of generators in @ is { D, N5} (the Lie balls are rank two spaces); the only arbitrari-
ness is the choice of the direction in the 3-dimensional N space. A Cartan basis for
LieG (which is of rank 3) can be gotten by completing the previous set, we get
{D,N;,J,; ! 1f we write the Shilov boundary of %4 as %4 = K/H, then H is the diagonal
subgroup of SO(4) € K so that Lie(H) is generated by J = 1/2(R + L). Writing Lie(K)
= Lie(H) + T(D), we find that the tangent space to D is generated by P, — K; and
P, + K,.Considering now the action of G = SO(4, 2) on the Shilov boundary, we know
that D = G/L where L is the little group of co and is the semi-direct product of the
Poincare group times dilation. L is therefore generated by J, N, P, and D so that the
tangent space at the infinity point of % is generated by the conformal translations K.
It can be shown that choosing an origin in the domain £ and a point at infinity in the
Shilov boundary & implies the choice of an “origin” of & (cf. 5.2). The little groups of
the infinity and of the origin 7 are exchanged by replacing translations by conformal
translations, and conversely.

4.4. Conformal transformations on space-time

In the case of Minkowski space-time considered as the Shilov boundary of 24 in its
unboundcd realization, we already know the action of rotations exp(0.J), Lorentz
boosts exp(a. Ly and translations exp(a. P) on space-time. One can then show that

exp(dD)(x,) =d.x,,

[x, + s,x%]
expls- K)x,) = [1+ é‘sx :— s2x2]’

Notice that the action of conformal translations is singular (and not linear). Notice
also that if we set x’ = exp(s. K)x, we get

2
2 X

T+ 25.x + 522

which shows that conformal translations (and dilations) do not preserve the line
element but they do preserve light-like intervals; the conformal group therefore pre-
serves light-cones and the causal structure of space-time. The fundamental vector fields
associated with this action are the following:
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D — N

P,=20,
S = X,0, — x,0,
D = x*0

K, =2x,D—x’P,.
They are not Killing vector fields since they do not leave invariant the Minkowski
mctric 77,, of space-time but they are conformal Killing vector fields. Let C(z) be a line
in Minkowski space (Lorentz metric #,,) with tangent vector X = x*d, and let us
compute the angles between this line and the conformal Killing vector fields (this
information will be used later). One gets

np,xX)=x,

P

ML,y X) = X,x, — X,X,

n(D, X) = x*%,

_ . 2.
K, X) = 2x,x"x, — x°%,.

P

4.5. Riemannian geometry of 7'n

4.5.1. General remarks

The holonomy group of a generic metric on %4 is SO(8). The holonomy group of a
generic Hermitian metric on %4 is U(4). The holonomy group of the SO(4, 2)-invariant
Kahler metric on 74 is SO(4) x SO(2).

4.5.2.  The Lobatchevski metric on &1, the product metric on 2 = @1 x 21 and the
Bergman metric on #n

It is well known that the Lobatchevski metric on &1, considered as the upper half
plane (z = u + iv,v > 0) 18

_ (du® + dv?)

L‘Z

ds?

The direct product metricon @2 = #1 x Z1is

. (du? + dv?) N (du3 + dv?) - vi(dz, dz,) + vi(dz,dz,)

2

ds
2 2y(,2
Uy ) (v7)(v3)

Letussetw, = (=, + z,)/2,w, = (2, - 2,)/2,w, = x| + iy, andw, = x, + iy,. We get
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ds? = 2/(y?) x {2y;y;dw'dw’/ — y* dw,dw}. In the previous formula, the indexes are
contracted with a Lorentz metric, ie. y2 = y,y" = y2 — y2, ydw' = y, dw' — y, dw?,
cte. but ds? is an Euclidean metric! This expression can be generalized to all the Zn.
Introducing the Lorentz metric #,, = (—11) in the case of Y2 or#,, = (-1 —1 —11)
in the case of &4 and removing the irrelevant numerical factor two— we can write
the Kihler Euclidean metric ds® = g, dw” dw® of the Cartan domains &n as

ds® = [,,/¥* — 2y, 0. (9 Jdw" dw”.

Also,

ds* = [m,, /v = 2y,0,/(y*)? 1 [dx"dx* + dy*dy*].
We will see later that it is useful to set

Yy = Pulp?

then, dy* = dp*/p? — 2p*(p.dp)/(p*)* and the metric reads

ds® = [n,,p* — 2p,p,1Ldx" dx* + dp*dp*/(p*)*].

Notice also that the Kihler metric g,, is equal to the commutator of operators x,

and y, = p,/p* where x,, and p, are the position and momentum operators of quantum
mechanies (use [x,,p,] = —in,,).

4.5.3.  The connection coefficients

The non-zero connection coeflicients are I'Y, = —TI'* with

vp vp

iTe = 13y, —nly, — niv) + 2P (3*v,9,).

4.5.4. The Riemann tensor on n

The non-vanishing components are

= R". = R*

vpa vpa

R‘v‘p(f = R‘\"-pa
with
RY = 1/2{1/v*(nkn,, — nin,, — nin,,)
+ 2/ (NEY, Ve + 0V Y, IV, + Ny V)

- 8/( yl )3."".Vvypyﬂ } .
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455, Geodesics

The geodesic equation is dw”/dt* + 'l (dz*/dt)(dz*/dt) = O with w = x + iy. We
will not discuss this equation here because we will use another technique to study
geodesics.

Geodesics on T*M

When M is a Riemannian or pseudo-Riemannian manifold, there are threc kinds of
“natural metrics” on the cotangent bundle T*M, but when M is flat (for instance in
the case of Minkowski), these metrics coincide. In this last case, let us write g =
g, dx*dx’ +¢,,dp* dp” and we have an obvious identification between TM and T*M
via the relation p, = g, p*. In the very simple case where M = R", the equation for
geodesics in T*M is X = 0, p = 0 and we get two kinds of geodesics:

1. The first class of geodesics (¥ = 0, p = X so that x = p = cte) are lift of gcodesics
of M (x = 0) by the Levi Civita of the metric of T*M.

2. The second class of geodesics (j = 0, x = p, so that p = x = cte) are orthogonal
to those of the previous class and, in relativity describe deviation ol geodesics of
space-time (cf. Jacobi fields) in M.

These very elementary remarks show that there are two very different kinds of
geodesics even in a standard phase-space such as T*M. We will see later why the
Cartan domain “n is also a “phase-space”; we should therefore keep in mind the fact
that, as in the classical case, there are several types of geodesics in a phase-space and
that their physical signification can be very different from one class to another one.

Geodesics in “n

Geodcsics can be studied by solving the equation for geodesics—which is of second
degree  butin the present case, where we have a group acting by isometries, it is much
more handy to write that the angle between geodesics and Killing vector fields are
conserved quantities because, in this way, we have already introduced the appropriated
constants of motion. We shall see later what the Killing fields are. When interpreted
as a phase space, some of these geodesics can be interpreted in terms of trajectories of
space-time but others, exactly like in the case of T * M, describe relative accelerations.
This can also be described in group theoretical terms [27].

4.6. Conformal transformations on the Lie ball 74

4.6.1. Action on 74 (direct calculation)

We know what the fundamental fields for the conformal group action on space-time
are. We have also given previously the action itsell. The action on the domain 24 itsell,
in its unbounded realization (forward tube) is gotten by replacing x, by z, = x, + iy,.
For instance, in a conformal translation of vector s, the point z goes to z’ with
2 = (2,4 8,251 + 25.2 4 5°2%). We have then to compute the real and imaginary

part of =" in terms of those of z. It is convenient to set
y;l - hp;:/pz

where h is a constant with the dimension of the Planck constant and where p will be
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interpreted as a momentum (cf. next section). Expressions are lengthy, so we will only
give the transformation associated with a conformal translation of vector s (which is
the more complicated but the more interesting). One gets

X =1/ [2h*(s*x.p + s.p)]p + [h*s® + h*{(4x.p)(s°x.p + s.p)
— (1 + 2s.x + s2xH)p?) + x2(pHH(1 + 2s.x + s°x%)]s
+ [R3(—p%s2) + (P21 + 25 x + s2x*)]x}
where
3 = h*(s?)? + K [4(s.p + s*(x.p))* — 2s?p*(1 + 25.x + s°x?)]
+ (PPl + 25.x + s2x%]?
and
p = (1/p?)[—h*s®> + p>x3s* + 2p*s.x + p*1p
+ (1/p*)[2h%s.p — 2p*x2s.p 4+ 4p2(x.p)(s.x) + 2p*x.p]s
+[—2s*x.p— 2s.p]x.
As expected, the transformation of x and p depend on both x and p (one should of
course not set p = mx here!). We should now investigate what happens at the limit 4
gocs to zero. Onc gets

xi = (x%s 4+ x)/[1 + 25.x + s2x?].

This expression coincides with the well-known action of the conformal group on
space-time (already given previously). Taking # — 0 in the case of the momentum leads

to
pa=11+2s.x +*x*|p+ [ 2x%s.p +4(x.p)x.s) + 2x.p]s
+[—2s%x.p — 2s.p]x.
The important observation is to remark that this last expression is exactly what one
gets classically. Indeed, if we set u = x = dx/dt,u’ = X/, = dx/,/dt" and compute dzt/dt’
from the transformation law for x, we find

w o= 1+ 2s.x+ s7x2Ju+ [ —2x%s.u + 4(x.u)(x.5) + 2x.uls

+ [—2s7x.u — 2s.ulx}/[1 + 2s.x 4+ s2x? ]2



24 R. COQUEREAUX and A. JADCZYK

So that il we sct classically p = mu, we obtain p,, = m'u’ where m'? = [1 + 2s.x +
s2x2Tm? as it should.

This striking result is another indication that the imaginary partof z = x + iy should
indeed be considered as the inverse of a momentum. Another argument using the
Poincaré-Cartan map will be given in the next section. We therefore have a map from
4 to the co-tangent bundle of its Shilov boundary (space-time), namely x + iy —
(x.p = hy/y?) and the action of the conformal group on the domain commutes, at the
h — 0 limit with the action of the conformal group on space-time itself. Notice that, in
the domain itself, x and p are independent variables. Notice also that, in the domain,
the Jacobian of the transformation z — z" is a 4 x 4 matrix whose components can be
related, in the h — O limit, to the four-acceleration of a classical curve in space-time.
We will examine further some relations between accelerated motion and the conformal
group in a coming section.

4.6.2. Killing vector fields

In the unbounded realization of the Cartan domain %4, ie. the forward tube
(z=x+1iy,y* >0, (or <0, depending upon Lorentz signature), the fundamental
vector fields associated with the action of the conformal group are Killing vector fields
for the Bergman metric. Their complex extension (as elements of the complexified
tangent bundle) are given by the same expressions as in Minkowski space-time, but
we have to replace d/dx by @/0z where 8/0z = 1/2(d/0x + 1/i0/dy). The (real). vector
fields themselves are then obtained by taking (half of) the real part of their complex
extension. For instance the complexified conformal translations read

K¢ = 2z,z°0/0z% — z*¢/oz".

The corresponding real vector fields, obtained by taking their real part, are given as
follows:

~
Il

djox*

~
I

= (x*0/dx® — x*3/dx") + (v*3/0y* — y*O/oy*)
D = x*0/0x" + y*d/oy*

K, =2x,D — 2y, (y"0/0x" — x*3/0y? —) — (x* — y*)P, — 2x"y,0/0y".
Notice that these vector fields coincide with those of space-time when we set y = 0.
Warning: x = 0, y = 0 is not a point of the domain %4, it is the origin of its Shilov
boundary; the origin of the domain itself is x = 0, y = (1000). Notice also that the
vector fields that vanish at the origin of the domain are J, K — P, K, + P,, i.e. the
tangent vectors that generate the isotropy group K = SO(4) x SO(2) of the origin. This
also shows that the tangent space at the origin of the domain (considered as a
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homogeneous space) is generated by a set of vector fields orthogonal to the previous
ones. For the same reason, we can identily those generators of LieG that span the little
group of the origin of space-time when we write it as G/L. They are those vector fields
that vanish at x = y = 0.

4.6.3.  Conserved quantities

Angles between geodesics of the domain and Killing vector fields are conserved
quantities in #4. Let us call X = x*d/dx* + y“d/dy" the tangent vector to a geodesic
at the point x(1), y(r). The metric is the Kahler metric given previously. We express
these conserved quantities in terms of x, and p, = y,/y*:

P, = L/(P;;*X) = pz"&p - 2("[))[)9

D = g(X,D) = p*(x.x) + (p.p)/p* — 2(%.p)(x.p)

tal
il

, = (X, Kp) = 1/p*{2[(p*)*(%.x) + (p.p) — 2(%. p)(x.p)p°]x,

+ 2[("[’) + [’Z(x-x)(;ﬁp)]pp - [(p2)2x2 - pz]-%p - 2(-"[’)[’,;}

Jpa pz[('%axp - 'i‘ﬂxa)] + [[papp - ﬁ{)pa)]/pz - 2(Xp)[(paxp - ppxa')] .

Rather than discussing geodesics of the domain ¥4 by using the geodesic equation
itsell, 1t is much more convenient to use the fact that the previous quantities are
conserved (for instance, in Minkowski space-time, we would write that the angle
P, = n(x?3/dx”, P, = d/dx") = X, is a conserved quantity and this precisely describes
geodesics). We will not carry this analysis here but want to mention that while
discussing these equations, it is also convenient to impose that particular conserved
quantities (corresponding to particular directions in the domain) vanish and to restore
the constant h, i.e. to set z = x + ihp/p>.

4.7. Cones, spheres and hyperboloids

4.7.1. Spaces of two-spheres in §* and in B,

Consider the space of spheres S" in R% A sphere is characterized by its center (g
coordinates), its radius (1 coordinate) and the position of the (n + 1)-plane of R? inside
which it lies. This position depends therefore on (n + 1)(g — (n + 1)) parameters—the
dimension of the Grassmannian SO(¢)/SO(n + 1)SO(q — (n + 1)). So the dimensional-
ity of this space of spheres is d(n,q)=q+ 1 +(n+ 1)(q—(n+ 1)) =2 — n* + n(g — 2).
For instance d(2,3) = 4, d(2,4) = 8, d(3,4) = 5, d(3,5) = 10.

The fact that d(2, 3) = 4 is not surprising since we know that il we consider a fixed
S* hypersurface t = t, in compactified Minkowski M = §3 x,, §' and the two-spheres
inside this S*, each two-sphere determines a causality diamond (past and future
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light-cones) with apexes zI, z2 in Minkowski M; . Therefore, up to a Z, factor, the
space of S¥’s is just My | = SO(4,2)/(P x R") where the little group is the semi-direct
product of the Poincare group P and dilations R*. The conformal group acts on these
spheres as follows: call S, (x) the two-sphere ¢ = 1, n Cone(x). Then SO(4,2) acts on
points ol M, so that we know what x’ = Ax is and also what the Cone(Ax) is. The
transformed sphere is S, (x" = Ax).

The 3-sphere S* is the boundary of the euclidean ball B4 in R*; it is therefore not
too surprising to discover that the space of two-spheres in B4 coincides with the
cight-dimensional Cartan domain %4; we will see that this is indeed the case (cf. section
devoted to harmonicity cells and to the Lelong map).

4.7.2.  Spaces of light-cones

A light-cone in (compactified) Minkowski M is fully characterized by its origin so
that the space of these light-cones is M itself so it can be identified with M = SO(4,2)/
(P x R*).

4.7.3.  Spaces of hyperboloids

Here, hyperboloids are thought of as three-dimensional spheres of compactified
Minkowski M5 . In the same way that SO(4,2) acts on points of M; , and that its
action on two-spheres of S* by cutting light-cones of My, by t = t,, we find that
SO(5,2) acts on points of M, ,, i.e. on its light cones (of equation t* — x? — y? — z% —
x% = 0). If we cut such a light cone by an hypersurface {xs = cte}, we get a two-sheeted
hyperboloid of M, ;. The space of two-sheeted hyperboloids can therefore be identified
with M, , itself so that it is equal to SO(S,2)/(P(5) x R") where P(5) denotes the
Poincare group in five dimensions. Notice that the space of |-sheeted hyperboloids is
not a quotient of SO(5,2) but of SO(4, 3); indeed we start from M, , and analyse the
action of its conformal group (SO(4, 3)) on its light cones (¢* — x* — y* — z% + x2 = 0)
that we cut by {xs = cte}, so that we get 1 — x* — y? —z2 = —xI <0.

To summarise: The space of two-spheres in the four-dimensional open ball B, can
be identified with the Cartan domain %4 (up to a discrete Z, factor). The space of
two-spheres in the three-sphere S® can be identified with its Shilov boundary, the
compactified Minkowski space-time M; ; (up to a discrete Z, factor). The space of
light-cones in M, , is a quotient of the conformal group SO(4,2), it has dimension 4.
The space of 2-sheeted hyperboloids of M5 | is a quotient of SO(S, 2), it has dimension
5. The space of one-sheeted hyperboloids of M5 , 1s a quotient of SO(4, 3), it has also
dimension 5.

Notice that SO(4, 2) is a subgroup of both SO(5, 2) and SO(4, 3), therefore it acts also
on the spaces of hyperboloids but not transitively.

The typical hght cone itself in M5 | is a quotient of SO(3, 1) by the Euclidean group
E(2). The typical two-sheeted hyperboloid in M, | is a quotient of SO(3, 1) by SO(3).
The typical one-sheeted hyperboloid in M; , is a quotient of SO(3, 1) by SO(2, 1).
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5. Cartan Domains as Spaces of Symmetries, /4 as a Phase-space and
Berezin-Weyl Calculus

5.1. Algebra and geometry of the SU(n,n)[S(U(n) x U(n)) family

In this section we will study geometry of the symmetric domains A, = SU(n, n)/
S(U(n)y x U(n)) by algebraic methods. To this end we will identify A, with a sub-
manifold S(V) of the vector space of all linear operators acting in a 2n dimensional
veetor space V.

Let V be a complex vector space of complex dimension 2n, equipped with a non-
degencrate sesquilinear form (v, w) of signature (n,n). We denote by 4 — 4* the
conjugation {Av,w) = {v, A*w) in L(V'). We call an operator S € L(V) a symmetry iff
S=258*% 5?=1,and {v,Sv> > 0 for all v € V. The set of all symmetries is denoted by
S(V). For each S € S(V), the positive definite scalar product (v, w)g is defined by

(v,w)g = {v,Sv).

Given a symmetry S one defines the orthogonal projection Eg = 5(2S + I). In this way
one gets a one-1o-one correspondence between the set of all symmetries and a subset
of the Grassmannian of positive n-planes. The unitary group U(V) = U(n,n) acts
transitively on S(V) by the natural action S — USU* with the isotropy group ~ U(n) x
U(n). Since the central circle group of U(n) acts trivially on S(V), we get the isomor-
phism S(V) = A, = SU(n,n)/S(U(n) x U(n)). Notice that the Lie algebra Lie(U(V))
can be identified with anti-Hermitian operators on V. When considered as tangent
vectors to S(V), they can also be identified with fundamental vector fields on S(V).
The fact that A4, is now embedded into an algebra allows us to use the algebraic
machinery for studying differential geometry of these domains. First of all, the relations
S = $2,S = S* allow us to identify complex tangent vectors at S e S(V) with operators
W such that WS + SW = 0. Real tangent vectors are characterized by the extra
condition W = W*. A natural almost complex structure J on S(V) is given by

WES J W = iSW.
The Kihler metric h on S(V) is simply given by
ho(W, , W,y = —Tr(W, W,).
The symplectic form w is
wg(W,, W,) =iTr(W,SW,),
for W, W, tangent at S to S(V). Both h and w are evidently invariant under the action

of U(n). The symplectic form is closed dw = 0. To see that the almost complex structure
J is covariantly constant under the Levi-Civita connection of h, it is again convenient
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to use the algebraic machine that provides an easy tool for describing the geodesic
parallel transport on S(V).

Given two points S|, S, € S(V), the operator S, S, is positive with respect to the p.d.
scalar products (r,w)s, i = I, 2. The operator , , = (5,5,)"? is then unambigously
defined, positive for both scalar products, and an isometry of V; we have t, ,* =
t,, '=t,,. Moreover,

250, =S,,

and f, , maps the n-plane V5 onto Vs . The most interesting property of ¢, , is that
when applied to tangent vectors to S(V) at S, it maps them into the tangent vectors
at S, obtained by parallel transport along the unique geodesic connecting the two
points. To see this one uses the fact that geodesics on S(V) are trajectories of one-
parameter subgroups of U(n). The transport operators ¢ preserve now the almost
complex structure J on S(V).

5.2. Boundary map and Cayley transform

The Shilov boundary S(V') of S(V) consists of isotropic n-planes. Let us fix one such
plane denoted . Each S, being in particular a symmetry in S(V), reflects oo onto
another isotropic n-plane

I,(S)=S,,.
The map 1, : S(V) — S(V) is equivariant with respect to the stability group at oo. If
now an origin O is fixed in S(V), its image under I, is called the antipode of co—or
the origin o of S(V).

There exists a parametrization of S(V) and of S(V) which makes the complex
structure of S(V) transparent, and the boundary map I, simple. To this end fix an
origin O in S(V) and o in S(V). One has oo L Oco, therefore V = o @ O, and so
one can identify o @ oo with V by the map

(vy,05)— v, +i0v,.
With this identification O has the form

O = antidiag(i, —1i),

and the indefinite scalar product of V reads

Py (W iy w 1 i— 12
, =i{v; wy)o — (v, Wi)o s vy W€ 00, i =1, 2.
vy A\ W,

The p.d. scalar product ( . ),, is given by
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+
(0, W)y = 0, w4+ 0,'w, 7,

4 w . .
for v = ( 1), W= ( '). We use the “1” to denote the adjoint with respect to the p.d.
s

Wa
scalar product induced on oc. This scalar product will be simply written as v'w. The
Lie algebra Lie(SU(V)) can be parametrized as

d+ L T
A —d— L*

wherede R, T = T', A = A’. The n(n + 1)/2-parameter Abelian subgroup generated
by T'—s leaves o (but not o) ixed —we call it “translation subgroup”. To each linear
opcrator Z in V one associates now a subspace V, ol V' by

V,={(Zv,v):ve oo} =(Z + i0)oo.

It follows that V, is in S(V) iff

i(Z* — 2)> 0,
and V, is in the Shilov boundary iff
(Z* - 2)=0.

Every subspace EgV, S € S(V)is of the form ¥, [or a unique Z. S is expressed in terms

of Z via
S_zo 2 - 1 0
“\o 1)z—-zx\0u —z*) \o 1)

A necessary and sufficient condition for a subspace of V to be of the form V, is that it
is transversal to ~o. The correspondence Z < V, is called Cayley transform. It maps
selfadjoint operators Z onto the Shilov boundary of S(V) minus “cone at inlinity”. The
boundary map I1,, is now given by

Z+Z*

z
)

Twistors. The above study can be applied, in a particular case, to the study of twistors
(Nag manifolds in C*) [25].
5.3. The momentum map

For a symplectic manifold (%, w) with a symplectic action of a Lie group G one
deflines a momentum mapping (Poincare-Cartan form) as a lunction J : % — Lie(G)*
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satisfying the condition
d(J(X)) = iz,

for all X € Lie(G), where for all s€ @, the function J(X ) is defined by J(X)(s) = (J(s), XD,
and X is the fundamental vector field associated to X. An explicit knowledge of the
momentum mapping is useful for a physical interpretation of the geometrical quant-
ities. We shall compute the momentum map by using the algebraic technique intro-
duced in the previous section. In our case the momentum mapping is given by a simple
formula

J(X)(S) = 2iTr(SX),
where S is in S(V)and X = — X*is in Lie(G). Taking V = C",
(o, w) = v 6w,

where G is the Hermitian matrix G € Mat,,, , 5,(C)

0 I
G=i ,

we have for the scalar product

(o,wy = i(UL*WZ - Uszl),

v w . .
forv = ( 1), w = ( 1). For n = 2 we can write the generators T of the translation
U, W,

group in terms of the Pauli matrices T = p*c,. The momentum map reads then

- |
po= T =0,)2) = Tr(f_zT (ru) .

Writing Z = (x* + iy*)a, we get p* = y*/y?. This explains why, in the forward tube
realization of the domain #4 = /2, the imaginary part of z = x + iy can be inter-
preted as the inverse of the momentum.

5.4. Berezin-Weyl calculus

The classical Weyl calculus associates Hilbert space operators to their phase-space
function symbols (see [58]). The fact that each Kéhler manifold & inherits its metric
from the canonical immersion in the associated (projective) Hilbert space P#?2 of
1-densities [40] endowed with the Fubini metric, makes the Weyl calculus on such a
manifold almost automatic. Denoting by e, the evaluation functional and by |z) the
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coherent state at z € &, so that

ong associates to each function f(z) on & the operator

F = J\A/.(Z) |z> {z]du,

where du = k(z,z)dz dz is the natural invariant measure on %. Equivalently, one ean
use the Bergman projection Py given by the Bergman kernel to produce the Toeplitz
operator F = PH_/A'P,, out of the multiplication operator f Notice that if the function f
is itsclf holomorphic, then no projection is necessary since (_f‘l’)(z) = [(z2)¥(2) is
holomorphic. Many of the relevant physical observables will be however represented
by non-holomorphic functions. In such a case [f‘}’)(z), even if square integrable, is not
holomorphic and the projection back onto the holomorphic functions is necessary. It
is by this projection that the non-Abelian algebra is created out of the Abelian algebra
ol classical functions on &. This approach to the Weyl calculus is natural in the case
where ¢ is considered as the phase space. For & the classical domains it has been first
investigated by Berezin [6] without understanding however the role of the Shilov
boundary for the physical interpretation (see also [62] where, for the domains %, and
instead of the Shilov boundary, the light cone plays the role of the configuration space).
The domain &7, has been proposed explicitly as a conformal relativistic phase space
by [50]. The domain %3 has also been studied in the same spirit (in relation with De
Sitter space-time) in [ 2] and [4]. It is important to understand that although the Weyl
calculus for these domains looks just like a standard game with coherent states and
Bergman kernels, it is the physical identification of space-time with the Shilov bound-
ary of the domain that makes it into a new and open subject. Anyhow, every two
separable Hilbert spaces arc isomorphic, but it is the interpretation of the Hilbert space
states and operators that makes the difference between the study of a hydrogen atom
and a cup of coffee.

6. Conformal Invariance in Physics and Mathematics

6.1. The breaking of conformal invariance in physics

The conformal group SO(4,2) is the biggest invariance group of the Maxwell
cquations, of the massless Klein-Gordon equation, of the massless Dirac equation and
more generally of all massless equations for particles of spin j. This means that if we
have a solution of one of these equations, we can obtain others by action of the
conformal group. At the infinetisimal level, this can be proven, for example in the case
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of the Klein-Gordon equation, by showing that the commutator of the Dalembertian
with a gencrator of the conformal group is either zero or proportional to the Dalember-
tian itself. Massless free field equations are not the only ones that are invariant under
the action of the conformal group. For instance, this is also the case in four dimensions
for the nonlinear equation [J¢ + ¢* = 0. One possible technique to manufacture four
dimensional lagrangians that are invariant under the conformal group is to use a
projective formalism in six dimensions [44]. Introduction of mass terms in the classical
lagrangian usually breaks the invariance under the conformal groups and this is why
it is often said that conformal invariance is broken in physics. It remains that the
conformal group acts on space-time itself and that one can write its action also on
fields defined on space-time. As usual, these fields will transform under a representation
of the little group of a chosen origin L = Lorentz transformations x Conformal trans-
lations x Dilations. Therefore, each field will be characterized not only by their spin
but by other “quantum numbers” corresponding to the other generators (for instance
by their conformal weight). The action of these generators on fields is given as follows:

Pyp(x) = id,o(x)
J@(x) = (i(x,0, — x,0,) + Z,,)0(x)
Do(x) = (ix, 0" + A)p(x)
K, o(x) = (i(2x,x,0" — x?0, — 2ix*(n,,A + £,,)) + k,)o(x).

Here, the matrices X,,, A and k, represent the generators of the little group (Lorentz,
dilations and conformal translations).

For any choice of Lagrangian, onc can then define the corresponding Noether
currents and the associated charges [44]. Invariance (if any) of the classical Lagrangian
under the conformal group is then expressed by the vanishing of the divergence of
those currents. When quantized, it happens usually that the classical equations for the
(non) conservation of currents are modified. One then defines “anomalous dimensions”
for the quantum fields and describe physics by renormalization group equations (cf.
[9] and references therein). Without going to the quantum level, it is already clear that
conformal symmetry is “broken” from the fact that, for instance, the Klein-Gordon
equation with mass is not invariant, unless mass itself is not treated as a constant but
as an x-dependent field. However, this last possibility is incompatible with what we
mean physically by “mass”, as measured in a locally Lorentzian frame.

6.2. Quantum mechanics in arbitrary frames

On the other hand, and according to the general philosophy of general relativity,
the laws of physics should be “the same” in any coordinate system. More precisely, if
somebody knows how to describe physics in a particular class of coordinate system,
we can choose any other—not necessarily gotten from the previous one by a Lorentz
transformation—-and describe the same physics. For instance, such a change of co-
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ordinate system O — O’ can be a conformal transformation (in general it will not be a
Lorcntz transformation), in which case, a (constant) mass m in the first coordinate
system will become a (non-constant) mass m’(x) in the new. This is not surprising and
has nothing to do with the previous discussion related to what is called the breaking
of conformal invariance. One thing is to notice that mass is not a constant quantity
when we decide to perform a conformal change of coordinates, another one is to decide
to actually perform such an arbitrary change of coordinates (for instance conformal)
and to describe physics in this new system. General relativity, in a sense, contains two
parts. The first describes how gravitation itsell is created, the other tells us how test
particles react in a given geometry and tells us that laws of (non-quantum) physics are
invariant under diffefomorphisms of space-time. Quantization of general relativity
should also contain two parts. The first would describe quantization of the gravity
field itsell (but maybe one should quantize only part of it or not do it at all), the next
should describe how to do quantum mechanics in a given gravity background, or more
generally, in an arbitrary coordinate system (not necessarily Lorentzian). Both ques-
tions are related but it may be easier to answer the last first. There were several attempts
to describe quantum mechanics in some particular accelerated systems (for instance,
the Hawking effect, i.e., the fact that a vacuum state appears as a temperature state,
when analysed by an observer in uniformly accelerated motion, has been studied in
[20]. Assuming that the global geometry of space-time is given (for instance that
it is a flat Minkowski space-time, or better, a compactified Minkowski space-time
§* x,, 8') it seems reasonable to describe how quantum mechanics looks when
analysed from a coordinate system gotten from a Lorentz one by an arbitrary con-
formal transformation. Why to stop there and not to consider an arbitrary diffeo-
morphism? The answer is that we certainly should, but the conformal group is the
biggest finite dimensional Lie subgroup of the group of all diffeomorphisms (which is
infinite dimensional) and it is transitive on space-time, so this should be considered as
areasonable (and essential) first step. We believe that some of the information gathered
in the present paper should be useful in this respect.

6.3. Conformal structures and diffeomorphisms

Let M be a Riemannian (or pseudo-Riemannian) manifold. Call g, a metric, Diff
the group of diffeomorphisms of M. This group acts on points of M and by pull-back
on its space of metrics. Let R be the space of Riemannian structures, i.e., the quotient
of the space of metrics by the action of Diff. Call [ g, ] the orbit of g, under this action.
Metrics which are conformally related to g,, i.e. metrics of the kind A(x)g, are usually
called conformal to g, or better “punctually-conformal” to g,. There are however of
two possible kinds. Some of them could be gotten from g, by the pull-back action of
diffeomorphisms - - they are in the same class [ g, . Others cannot be gotten in this way
and they define inequivalent Riemannian structures. Finally, we have the case of
metrics which can be obtained from g, by both a conformal rescaling and a diffeo-
morphism; they are called “globally conformal” to g,. Notice that the so-called
“confeomorphism”— product of diffeomorphisms times the Weyl group of conformal
rescalings - -acts also on the space of metrics and we could also consider the corre-
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sponding orbits. Invariance of laws of physics under general change of coordinates
amounts to say that physics is independent of the choice of a metric in a given orbit
under Diff. This should not be confused with a more general principle that would
require physics to be invariant under confeomorphisms. Notice that in the particular
case where M is the compactified Minkowski spacc-time, the group SO(4,2) acts by
difffomorphisms, i.e. SO(4, 2) < Diff. Moreover, those metrics that are in the same class
[n] as the Minkowski metric n and are punctually conformal to it are precisely obtained
from 5 by a transformation of SO(4, 2). However, there are metrics that are punctually
(or globally) conformal to the Minkowski metric that cannot be obtained from it
by a transformation of the conformal group. Incidentally, notice that the solutions
of Friedman equations for a spatially closed universe with cosmological constant
(Friecdman-Lemaitre cosmologies) can be given the topology of S* Xz, S'. In cosmic
coordinates, the metric reads —dt? + R{(t)? do?. The fact that time is also compactified
is harmless since the closure of the circle can even take an infinite cosmic time. Notice
that these solutions are conformally related with the “flat” Minkowski metric—this is
obvious if we use the conformal time dt* = dt?/R(t)%.

6.4. The bundle of conformal frames and the compactified tangent bundle

A conformal structure on a given manifold M of dimension n is defined by the choice
of a conformal class of metrics of signature (p, g). We will choose here(p,q) = (n — 1,1).
We will show that Cartan domains of type “n and their Shilov boundaries are
intimately related to the geometry of Lorentzian manifolds. Let such a conformal
structure be given. The space of adapted frames of the tangent bundle is therefore a
principal bundle with a structure group which is the product of SO(n — 1, 1)---rotations
times R* (dilations). The structure group can then be extended to SO(n, 2)- —itis always
possible to extend a structure group! The principal bundle that we obtain in this way
can be called the “bundle of conlformal frames”. Then, one can build an associated
bundle above M whose typical fiber is SO(n, 2)/(P x R") where P is the corresponding
Poincare subgroup. This typical fiber can therefore be identified as the compactified
Minkowski space "' x, S'. This bundle is the “compactified tangent bundle”. It
could bc obtained also from the tangent bundle itself by adding at each point a cone
at infinity but this identification is not canonical and depends on the choice of a
Riemannian metric from the conformal class. For this compactified tangent bundle
one can develop here a theory of parallel transport (Cartan connexions). In the same
way, we can build a bundle above M with Cartan domain Dn as a typical fiber. It is
constructed by acting with the structure group SO(n, 2) of the previously constructed
principal bundle (also called bundle of “second order conformal frames” [33] on the
homogeneous space SO(n,2)/SO(n) x SO(2). The case n = 2 is exceptional in the sense
that any two (pseudo)-Riemannian structures are conformal (up to a diffeomorphism).

Notice that thc conformal group SO(4,2) acts globally on “conformal frames”
(elements of the corresponding principal bundle) but it does not know how to act, in
the non-flat case, on the manifold M itself. Of course, in the particular case where M
itself is diffeomorphic with $"' x, S', the conformal group knows to act on M
(provided wc choose a point called origin).
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6.5. Conformal invariance and accelerated observers

Action of a conlormal transformation on a non-accclerated object.

Letussetu = X and let us also call acceleration the quantity ¢ = . From the classical
law of translormation of x under a conformal translation of vector s in spacc-time, one
can compute how velocity transforms (this was alrcady done previously) and how
acccleration itsclf transforms. This last expression is rather long and is of no interest
here but we want to mention that it is of the kind a” = Aa + Bu + Cx + Ds and that,
even if we choose a = O we find ¢’ # 0, and it will be a function of u, s and x. Actually,
if we also imposc x = O and s.u = 0 we find that ¢’ = 2(u.u)s. Therefore, if we observe
an unaccelerated object in a Lorentz [rame and perform a change of coordinates
associated with a conformal translation, the same object looks accclerated in the new
frame. Howcver, this acceleration will depend usually upon its position.

Uniformly accelerated objects (hyperbolic motion)

Notice first that a Fermi-Walker transported tetrad (e, = u, ¢;) can be defined for
any kind of motion (sec for instance [45]). Notice also that “uniform acceleration” can
be defined as a motion for which the scalar product ¢;.u is constant. This, in turn, is
equivalent to assume that the following equation is satisfied:

da/dt — a*u = 0.

The hyperbolic motion has been analysed by scveral authors and we do not intend to
give an account of what has been done here. However, we want to mention that this
kind of motion is not what one¢ gets when a conformal transformation is applied. This
is already clear from the fact that the hyperbolac of the hyperbolic motion do not
coincide with thosc obtained by conformal transformations: the first are asymptotic
to the same light cone, whereas those obtained by conformal transformations are
parallel! Moreover, according to our general philosophy explained before, we prefer
to consider the conformal translormations as “passive” transformations.

7. Harmonicity Cells, Lie Spheres and Lie Balls

7.1.  Definition of a harmonicity cell

Consider R" as the subspace of (" = {z = (z,,z,,...,2,,z2 = o + if§} defined by
f# = 0. Then, any rcal analytic function (i.e. existence of a convergent Taylor series) on
an open sct & < R" can be considered as the trace on Q of a function holomorphic on
an open set € of C" with Q, n R" = Q. We could be tempted into considering the
space (), Q, where L is the set of all real analytic functions on Q. Unfortunately, this
space is essentially Q itself (and, more precisely, its interior is the empty set). However,
if we do not consider all the real analytic functions on Q but only those that are real

)
harmonic (i.e. solutions of Af = 0) in Q, the set # (Q) = h,‘ Q, is no longer empty and
itis called “the harmonicity ccil of the open set” Q < R"[3][39]. It can be proven that
a harmonicity cell is always a domain ol holomorphy (we remind the reader that the
domain of holomorphy D of a function ¢ of several complex variables is a domain of
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C" such that g cannot be holomorphically extended beyond D and that a domain is
called a domain of holomorphy if it is the domain of holomorphy of some function g).

7.2. Complex cones and spaces of spheres

Here we indicate a geometrical construction for the harmonicity cell of a given
convex domain in R". Only sketchy proofs will be given. Detailed proofs can be found

in [3].

Notations:

(=a+if =000 0)eCT,
{=a—if =0 L) e C,
Q=0 +G+ - +eC,

Gay =la=Ca, + Ga, + 0+ (,a,,

IZ] = ¢ = <O,

We also denote by I'(u) the isotropic complex cone of center u € R, 1.e.

F(u) = {{e C"/Q( — u) = 0}

and by S" ! the unit sphere in R”. Notice that Q(z) # Zz.

The Lelong transformation

This transformation T maps points of C" to spheres of dimension n — 2 included
into R™. If { e C", then T({) is the S"~2-sphere centered in a = Re({), of radius | B
contained in the hyperplane of equation {u — a, > = 0. Notice that the above hyper-
plane cuts the S""'-sphere of center o« and radius || ]| along an equatorial S~ sphere.

According to the definition of Q((), it means that T({) = {t e R"/Q(z — t) = 0},
which means that, if { e C" and r € R" then

(el ()y=1e T).

This establishes a relation between complex cones and spheres.
It is easy to show that the map T is two-to-one, more precisely

TE) =T =L

Notice that if { = « € R" then T(x) = a; it is an (n — 2)-sphere of dimension zero!
One can show that, if A: C" - C" is a linear map defined by a (real) orthogonal
matrix in the canonical basis of C" then T(A[{]) = A[T(()].
We already mentioned the fact that the space of "~ 2-spheres of R™ is of dimension
2n since a given element is determined by the center (n parameters), the radius



CONFORMAL THFEORIES 37

(1 parameter) and the choice of the (n — 1)-hyperplane in which it is embedded (n —
|-parameters). In particular, if n = 4 then the space of S? spheres of R* is 8-dimensional.

Lelong paths and harmonicity cells

Let Q = R".Q # 0, then a Lelong path associated to Q of origin { € C" and extremity
a € C"isacontinuous mapy: [0, 1] — C"such that for any 7 € [0, 1], the sphere T(y(1))
is contained in Q.

The following theorem [3] provides a “constructive” definition of the harmonicity
cell .#(Q).

A (Q) = {{ e C"/There exist a € Q and a Lelong-path associated with Q linking a to
o

Harmonicity cells of convex domains in R"

Let us suppose now that the open set € is a convex domain of R" (we have in mind
the case where Q is the 4-dimensional euclidean ball), then, the fact that T({) € Q insures
the existence of a Lelong path linking { to the points of Q. Therefore

HQ) = {Le YT < Q).

More explicitly,

H(Q) = {C =oa+ i[f/ Max [Max (a + & ay — sup({a,a)), {x e Q}] < 0} .

SeTiy) | jai=1
We shall apply this theorem below to the case where Q is the euclidean ball B, .

7.3. Lie norm, Lie distance and Lie balls

We first introduce another norm in C” called the Lie norm and show that the unit
ball for this norm (called the Lie ball) is the harmonicity cell of the “usual” unit ball
of C".

The Lie norm on C"

The Lic norm is defined as the map L:C" - R":

(e = L) = Max ]
e 1)

or, equivalently,
L) = TICI? + I* = 1011,

Let us just mention the following useful properties of the Lie norm.
Lis a norm on C™:

Lo+ if) = [l + 1817 + 2/ 1?1817 — <o B

Il < LC) < el + 11A8I1;
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moreover
LO= <=7 =18 + -+ Gl L@ = flall + 1Bl <= <o > = 0.

The previous formulac show that L({) can be interpreted as the usual euclidcan
distance between the origin O and the point of the Lelong-sphere T({) which is at the
maximum distance of O.

The Lie distance:

The Lie distance Ld({, &) is defined as L({ — ¢&).

The Lie ball:

The Lie ball D,(R) of center O and of radius R in C" is of course defined as the ball
for the Lie norm L, i.e.

D,(R) = {{e C"/L({) < R}.
The following equivalence will be useful in the sequel:
LX) = 1012 + JIEI* = 1017 < R2<=[IQ())* ~ 2R*|z{|* + R* > 0, and

10(0) < R*].

Notice that the Lie distance is equivalent to thc usual euclidean distance; in other
words, the Lic ball as well as the usual eight-dimensional euclidean open ball Bg are
homeomorphic as topological manifolds. Both are also homcomorphie to the space
R® or C*.

7.4. Dyis the harmonicity cell of the euclidean ball B,

The previous gcometrical interpretation of the Lie norm and the characteristic
property of harmonicity cells of convex domains imply in particular that

D.(O.R) = {{ € C"/T() < B(O.R).

In other words, the Lie ball D, is the harmonicity ceil of the euclidean ball B,(O, R). In
the following, we will mainly consider the unit balls and denote them by B, (for the
usual euclidean ball) and D, (in the case of the Lie ball).

Let us recall the analytic definition of the Shilov boundary.

Let .o/ be a set of (non-constant) holomorphic functions in a bounded domain D of
C™ and continuous on D. Then D < @D is the smallest closed subset of the boundary
D such that every f € .o reaches its maximum (in module) on D and on D only.

7.5. The Shilov boundary of the Lie ball D, (Lie spheres)

One can prove the following results | 3].
The topological boundary of D,.
Since D, is, in the casc n = 4 topologically homeomorphic to the eight-dimensional
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open ball By, it is clear that its boundary is homecomorphic to the seven-sphere S7. The
topological boundary of D, (of radius 1) is therefore the set

oD, = {&e C"/L(E) = I}
where L is the Lie norm. Morc explicitly,
n Z / 4 )<
D, = {Ee CY/IIENE + IEF = 1QEN1? = 1}.

Notice that this “boundary™ is here defined as the “topological boundary of D, in C"”,
i.e. as the complement of the interior of D, in its closure. It is clear that holomorphic
functions will reach thcir maximum on a subset (but as we shall see, not all) of this
boundary.

The Shilov boundary S,.

One can prove that S, is the subset of ¢D, defined by

Sa={Ee CVIENI? = 10E) = 1}
It 1s cquivalent to say that this space is the subset of the boundary made of the points

where the euclidean distance | &]|? is equal to the Lie distance |L(£)]|?. Using coor-
dinates, onc can also write

S, =1 =2 e C"/xe R"

n

ol = 1.0 € R},

This last property shows that S, = §" 7! x,. §'. As already discussed, this generalized
Klein bottle (the n = 2 case) can be identified, for n = 4 with compactified space-time.

If we take & € S, —and choosc the radiusto be R~ we show easily, using the previous
relations that the corresponding Lelong-sphere T(E) is an (n — 2)-sphere of radius R;
it is therefore included in the Euclidean sphere $"~' of R" (remember that the other
(n — 2)-spheres corresponding to the points of the domain D, are included in the
cuclidcan ball B,, i.c. “inside™ the sphere $"7'. The Shilov boundary of the Lie ball (i.c.
the compact manifold $” ' x,, $'}is also called a Lie sphere.

7.6. Non-intrinsicness of the construction, physical meaning of the ball B,

We started from a given four-dimensional ball B, inclosed into R* then built D,
inclosed in C* and its Shilov boundary (space-time) S,. But there are many ways of
putting R* into C* and we could have started with another one. The choice of the
subset R* amounts to the lollowing: start with C* and choose a conjugacy (a complex
antilincar map of square 1), this defines a supspace R* (on which this conjugacy acts
trivially), now we can choose the euclidean ball B, and proceed to the construction of
the harmonicity cell D, and of its Shilov boundary as before. What we get is indepen-
dent (c.f. the explicit formulae for the Lie norm) of the choice of R* in C*,

Physically, we have the following situation: start with space-time §4, we know that,
up lo a Z,-lactor it has the topology of §* x §'. Lct us choose a fixed “event”
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{o = (xg,to) € S* x S' and consider the corresponding 3-sphere S* = $* x {1, }; this
set is a “spacelike™ hypersurface and can be considered as the spatial universe at time
t, (we can even speak of a global time because of the homogeneity of space-time in
this description). Now, consider the spatial-universe at time ¢, i.. this 3-sphere S*, we
can then fill it in (this operation does not take place in “space” but in a “higher”
dimension); in this way we get a four-dimensional ball whose boundary is “space” at
time t,,. Now we can proceed to the construction of the harmonicity cell D,. If we now
consider a massless scalar field on this space S* at time t,, we can propagate it “in
time” to a later time ¢, by using the wave equation (Dalembertian), but we can also
extend it to the “inside” of $*, t = t, by a solution of the Laplacian in the ball, then
extend it to the harmonicity cell D, by analytic continuation using a holomorphic map
and finally consider its radial limit to the Shilov boundary at a later “time” ¢,.

7.7 The physical meaning of the Lelong map

Points of S,

We already know that the image T(() of a point { € S, is a 2-sphere included in the
3-sphere S* but this construction was marking reference to a “fixed” B,. The previous
remark concerning the non-unicity of this choice shows that one can define a Lelong
map for each choice of the euclidean ball B,. We also know that the boundary of this
ball is a 3-sphere belonging to the Shilov boundary and that it can be considered as a
spacelike hypersurface at a fixed time t,. The physical interpretation of the two sphere
T({) is clear and was studied in Sec. 4.7.1 (when an observer at time ¢, contemplates
the sky and more particularly a sphere centered on him, he should remember that this
sphere (a 2-sphere) defines a causality diamond or more precisely, a double-cone with
apexes ¢ and {).

Points of D,

Here again, the Lelong map is defined relatively to the same reference euclidean ball
B, chosen at time ¢t,,. The difference now is that if we take { € D, and not on the Shilov
boundary (i.e. not on space-time), the corresponding Lelong 2-sphere lies “in” the
euclidean ball B, but not “in” its boundary S*.

Low-dimensional examples

In order to acquire some familiarity with the previous constructions, it may be useful
to consider several low dimensional examples. In the case n = 1, it is not possible to
define D, as the harmonicity cell of the interval B; = ]—1, + 1[ because this would
lead to the entirec complex plane. However, the Lie norm coincides in this case with
the usual norm, therefore, the Lie ball D, coincides with the unit disk.

8. Other Aspects of Classical Domains

Cartan domains—and particularly Lie balls—have many relations with several
branches of mathematics and physics, and many independent works have been done
in the past in relation with this subject. It was impossible for us to cover everything
here but we would like to conclude this paper by giving a brief description of what can
be found along with a few other references.
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Field theory of extended objects A recurrent idea in physics is to write field theories
lor extended objects. In some cases, the argument of fields are three-spheres of
Minkowski space (i.e. hyperboloids). Along the same lines, we have to mention the
famous article [66] where a value lor the fine structure constant a was proposed

5 1/4

(namcly o= 8?1“ <;5') > and interpreted in terms of the Bergman kernels of the
domains 4 and 5. This interpretation was actually rather unclear and has never
been accepted. The precision of the prediction was actually so impressive (it still is)
that it has triggered many papers who try to prove or disprove the result. We will not
quote these papers because we think that they are actually even less convincing than
the first. It remains that the value of « is an experimental data in particle physics and
it could even be that it has something to do with the geometry of Cartan domains!

Super-Hamiltonian formalism and Schwinger proper-time formalism Super-Hamil-
tonian formalism is described for instance in [45] and Fock-Schwinger proper-time
formalism for instance in [26]. Tn this last case, for example, one introduces an
evolution operator U(x,, x,,1) = {x,|U(1)| x,)> for a hamiltonian that describes the
proper time evolution of some system. Here x; and x, are space-time events. One has
then to use the fact that the commutator of operators [ x*, p*] = —iy**. The commuta-
tion relation between x* and y* = p*/p? is then exactly the Kihler metric on %4.

Field theory at finite temperature As already mentionned, if we perform a change of
coordinates described by a conformal transformation, a non-accelerating object in the
first coordinate system will be accelerating in the new coordinate system. Moreover,
itis known that quantum mechanics in accelerated systems can be interpreted in terms
of thermal effects. This certainly would deserve a more detailed study.

Jordan pairs The theory of Jordan algebras and, more generally, Jordan triple
systems and Jordan pairs, may be applied to study the geometry of bounded domains.
The reason is that one can define a Jordan triple product by using “structure constants”
Ci;i expressed in terms of the fourth derivative of the logarithm of the Bergman kernel.
A detailed account of this theory can be found in [42]. The Szeg6 kernel of the domain
G/K admits an explicit (non-abelian) Fourier development with respect to the group
K. This development can be explicitly computed for all the Cartan domains in terms
of the “function gamma” associated to the corresponding Jordan algebra [38].
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