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Abstract. Max Born’s reciprocity principle is revisited and complex four dimensional
Kihler manifold Dy &= SU(2,2)/S(U(2) x U(2)) is proposed as a replacement for space-
time on the micro scale. It is suggested that the geodesic distance in Dy plays a role of a
quark binding super-Hamiltonian.

1. Introduction

Some 55 years ago, in the Scottish city of Edinburgh, Max Born wrote
‘A suggestion for unifying quantum theory and relativity’[Born, 1938], the
paper that introduced his ‘principle of reciprocity’. He started there with
these words:

‘There seems to be a general conviction that the difficulties of our present
theory of ultimate particles and nuclear phenomena (the infinite values of the
self energy, the zero energy and other quantities) are connected with the problem
of merging quantum theory and relativity into a consistent unit. Eddington’s
book, ”Relativity of the Proton and the Electron”, is an expression of this
tendency; but his attempt to link the properties of the smallest particles to
those of the whole universe contradicts strongly my physical intuition. Therefore
I have considered the question whether there may exist (other possibilities of
unifying quantum theory and the principle of general invariance, which seems
to me the essential thing, as gravitation by its order of magnitude is a molar
effect and applies only to masses in bulk, not to the ultimate particles. I present
here an idea which seems to be attractive by its simplicity and may lead to a
satisfactory theory.’

Born then went on to introduce the principle of reciprocity - a primary
symmetry between coordinates and momenta. He explained that

“The word reciprocity is chosen becausc it is already generally used in the
lattice theory of crystals where the motion of the particle is described in the
p-space with help of the reciprocal lattice.’

A year later, in a paper " Reciprocity and the Number 137. Part I”, [Born,
1939] he makes an attempt to derive from his new principle the numerical
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value of the fine structure constant. ! The most recent and clear exposi-

tion of the principle of reciprocity appears in his paper ‘Reciprocity Theory
of Elementary Particles ’, published in 1949 in honor of 70th birthday of
Albert Einstein [Born, 1949]. The following extensive quotation from the
Introduction to this paper brings us closer to Born’s original motivations.

“The theory of elementary particles which I propose in the following pages
is based on the current concepts of quantum mechanics and differs widely from
the ideas which Einstein himself has developed in regard to this problem.(...)
Relativity postulates that all laws of nature are invariant with respect to such
linear transformations of space time z* = (x,t) for which the quadratic form
R = z¥z; =t — x? is invariant (...). The underlying physical assumption is
that the 4-dimensional distance r = R? has an absolute significance and can
be measured. This is natural and plausible assumption as long as one has to do
with macroscopic dimensions when measuring rods and clocks can be applied.
But is it still plausible in the domain of atomic phenomena? (...} I think that
the assumptions of the observability of the 4-dimensional distance of two events
inside atomic dimensions is an extrapolation which can only be justified by
its consequences; and I am inclined to interpret the difficulties which quantum
mechanics encounters in describing elementary particles and their interactions
as indicating the failure of this assumption.

The well-known limits of observability set by Heisenberg’s uncertainty rules
have little to do with this question; they refer to the measurements and mo-
menta of a particle by an instrument which defines a macroscopic frame of
reference, and they can be intuitively understood by taking into account that
even macroscopic instruments must react according to quantum laws if they
are of any use for measuring atomic phenomena. Bohr has illustrated this by
many instructive examples. The determination of the distance R of two events
needs two neighboring space-time measurements; how could they be made with
macroscopic instruments if the distance is of atomic size?

If one looks at this question from the standpoint of momenta, one encounters
another paradoxical situation. There is of course a quantity analogous to R,
namely P = p® = pyp* = E? — p?, where px = (p, E) represents momentum
and energy. But this is not a continuous variable as it represents the square of
the rest mass. A determination of P means therefore not a real measurement
but a choice between a number of values corresponding to the particles with
which one has possibly to do. (...) It looks therefore, as if the distance P in
momentum space is capable of an infinite number of discrete values which can be
roughly determined while the distance R in coordinate space is not an observable
quantity at all.

This lack of symmetry seems to me very strange and rather improbable.
There is strong formal evidence for the hypothesis , which 1 have called the
principle of reciprocity, that the laws of nature are symmetrical with regard to
space-time and momentum-energy, or more precisely, that they are invariant

! He failed, but many years later Armand Wyler [Wyler, 1968,1969,1971} obtained
a reasonable value by playing, as we shall see, with a similar geometrical idea. Wyler
failed however in another respect: he was unable to formulate all the principles that are
necessary to justify his derivation . Iis work was criticized (cf. [Robertson, 1971; Gilmore,
1971; Vigier, 1976]), his ideas not understood, his name disappeared from the lists of
publishing scientists.
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under the transformation
Ty~ Pk, Pr— —Zk. (I.1)

The most obvious indications are these. The canonical equations of classical
mechanics

* = 0H/dp,,  pr = —OH/0zF (1.2)

are indeed invariant under the transformation (I.1), if only the first 3 compo-
nents of the 4-vectors z*¥ and p, are considered. These equations hold also in
the matrix or operator form of quantum mechanics. The commutation rules

2Fp - p,xk = ihé,‘“, (1.3)
and the components of the angular momentum,
My = ZppPr — TPk, (14)

show the same invariance, for all 4 components. These examples are, in my
opinion, strongly suggestive, and I have tried for years to reformulate the fun-
damental laws of physics in such a way that the reciprocity transformation (I.1)
is valid (...). I found very little resonance in this endeavor; apart from my col-
laborators, K. Fuchs and K. Sarginson, the only physicist who took it seriously
and tried to help us was A. Landé (...). But our efforts led to no practical re-
sults; there 1s no obvious symmetry between coordinate and momentum space,
and one had to wait until new experimental discoveries and their theoretical
interpretation would provide a clue. (...) There must be a general principle to
determine all possible field equations, in particular all possible rest masses.(...)
I shall show that the principle of reciprocity provides a solution to this new
problem — whether it is the correct solution remains to be seen by working
out all consequences. But the simple results which we have obtained so far are
definitely encouraging (...).

’

2 The very problem of a serious contradiction between quantum theory and
relativity was addressed again, in 1957, by E.P. Wigner in a remarkable
paper ‘Relativistic Invariance and Quantum Phenomena’, [Wigner, 1957].
Wigner starts with the assertion that ‘there is hardly any common ground
between the general theory of relativity and quantum mechanics’. He then
goes on to analyze the limits imposed on space-time localization of events
by quantum theory to conclude that:

“The events of the general relativity are coincidences, that is collisions
between particles. The founder of the theory, when he created this con-
cept, had evidently macroscopic bodies in mind. Coincidences, that is,
collisions between such bodies, are immediately observable. This is not

2 It must be said that later on, in his autobiographical book ‘My life and my views’,
[Born, 1968], Born hardly devoted more than a few lines to the principle of reciprocity.
Apparently he was discouraged by its lack of success in predicting new experimental facts.
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the case for elementary particles; a collision between these is something
much more evanescent. In fact, the point of a collision between two el-
ementary particles can be closely localized in space-time only in case of
high-energy collisions.’

Wigner analyzes the quantum limitations on the accuracy of clocks, and
he finds that ”a clock, with a running time of a day and an accuracy of
10~8 second, must weigh almost a gram—for reasons stemming solely from
uncertainty principles and similar considerations”. *

2. Reciprocity the Twistor Way

Max Born’s original idea of reciprocity was clear but imprecise. We will try
to interpret it using more modern concepts. The interpretation below is ours.
And so are its faults.

2.1. INTERPRETATION

We will interpret the reciprocity symmetry (I.1) as a tangent space symme-
try rather than as a global one. So, we assume that the fundamental arena
D in which relativistic quantum processes take place is an 8-dimensional
manifold with local coordinates (z#,p*). The symmetry (L.1) should hold
in each tangent space. Since the square of the operation (I.1) is —I, we in-
terpret (I.1) as the requirement that D should be equipped with a complex
structure, which is respected by the fundamental equations. It is clear from
Born’s papers that D should be also endowed with a metric tensor. The sim-
plest complex Riemannian manifolds are those that are Kahlerian symmet-
ric domains. I choose the Cartan domain Dy =~ SU(2,2)/S(U(2) x U(2)) =
50(4,2)/5(0(2) x O(2)) as the candidate. It has many nice properties -
some of them will be discussed later. There are also many possible ob jec-
tions against such a choice. Let me try to anticipate some of them.
— D4 has positive-definite metric - it cannot contain Minkowski space
= True, indeed. On the other hand one can argue that according to
Born’s original idea, and according to the analysis by Wigner, Min-
kowski space-time of events is only an approzimation. High-energy
or high-mass approximation. Thus it is reassuring that the Shilov

3 1 will return to this conclusion when interpreting space-time as the Shilov boundary
of the conformal domain D,.

4 In 1986 Kéarolyhdzy et al.in the paper ‘On the possible role of gravity in the reduction
of the wave function’, [Kdrolyhdzy, 1986], presented another analysis of the imprecision
in space-time structure imposed by the quantum phenomena. They proposed ‘to put the
proper amount of haziness into the space—time structure’. Their ideas, as well as the ideas
of a ”stochastic space-time” most notably represented by E. Prugovecky (cf. [Prugovecki,
1991]) and references therein) all point in a similar direction.
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boundary of Dy (the important concept that will be discussed later)
is naturally isomorphic to the (compactified) Minkowski space en-
dowed with its indefinite conformal structure. Let us interpret the
points of D4 as elementary micro event—processes, that is micro-
events accompanied by energy transfers. A coordinate of such an
event is zF = zF + hp¥/p?, with p? = E? — p? > 0 (see Sec. ?77).
In the limit of large energy transfers h*/p* — 0 the positive definite
metric blows up. What remains is the Minkowskian conformal metric
for z* = 2% + 0 - the finite part of the Shilov boundary. The positive
definiteness of the Riemannian metric on D4 can be thus viewed as
an advantage rather than as a fault.

D, is not invariant under time inversion.

Indeed, time inversion is not a symmetry of Dy — it would change the
complex structure into the opposite one. We will see that when real-
izing Dy as a part of the Grassmannian in C* one gets automatically
two copies of the domain. Then time inversion can be thought of as
the transposition of these two copies. We consider Dy as useful for the
modeling of physical processes on a micro-scale (say, inside mesons
and hadrons). We know that on this scale time-inversion need not
be a symmetry. On the other hand such a primary arrow-of-time on
a micro-scale may well be connected with the observed macroscopic
irreversibility as dealt with in thermodynamics. Thus breaking of the
time-inversion symmetry can also viewed as an advantage rather than
as a fault.

Dy has constant curvature and it is hard to imagine how models based
on D4 can be constructed that include gravity and/or gauge fields.

True, one of the original reasons for introducing the principle of reci-
procity was unification of gravity and quantum theory. On the other
hand, let us recall that, according to Born, gravitation ‘is a molar
effect and applies only to masses in bulk, not to the ultimate par-
ticles.’If so, and according to our interpretation above, there is no
place for gravitation (and for other gauge fields as well) inside a me-
son or a hadron. Of, course, one could object that then there is also
no place for space,time,energy and for momentum. It is of course an
extrapolation, perhaps unjustified, that these concepts apply to such
a micro-scale. However, extrapolating Einstein’s scheme of general
relativity into this domain would be unjustified even more. Therefore
the idea that the primary arena of elementary event-processes is ho-
mogenous under a sufficient "zoom” may be rather attractive than
appalling. °

There is nothing new in the idea. Everything has been already said.

° 1 heard this idea from Rudolph Haag.
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= This objection is a serious one. There are extensive papers dealing
with the domain D4, mainly by Roger Penrose and his group (cf. [Pen-
rose and Rindler, 1986] and references there), but also by Odzijewicz
and collaborators (see [Odzijewicz, 1976; Karpio et al., 1986; Odzi-
jewicz, 1988] and references there), and by Unterberger [Unterberger,
1987]. Many of these papers are too difficult for me to understand all
their conclusions. Therefore there is a chance that the ideas presented
here are simplistic and naive, mainly owing to my inadequate knowl-
edge. If so, I will beg your pardon, and I will do my best to (at least)
present those ideas that, I believe, deserve propagation. 6

3. Algebraic description of the conformal domain Dy

There are many ways of describing the same domain Dy. I choose the alge-
braic description because it is simple. On the other hand it so happens that
many years ago I studied its geometry, by algebraic means, without being
fully aware of the full impact of the study [Jadczyk, 1971].

Let V be a complex vector space of complex dimension n = p+¢, equipped
with a Hermitean scalar product {, ) of signature (p,q). The domain D} is
then defined as the manifold of p dimensional, positive linear subspaces of
V7. In the following we will write D,, to denote D;f. Let L(V') denote the
algebra of linear operators on V. For each subspace W € Dy, let Ew denote
the orthogonal projection on W, and let Sy = 2Ew — I. Then Sw = St
S&, =1, and (v,w)s, = (v,Sww) is a positive definite scalar product on
V. The last statement follows from the fact that Sw reverses the sign on
WL, Conversely, if S € L(V) satisfies the three conditions above, then the
subspace W = {v : Sv = v} is in D, and S = Sw. Geometrically, Sw plays
the role of a geodesic reflection symmetry with respect to the point W € D,.
The parametrization of the points of D, through their symmetries is in many
respects the most convenient one - the fact that is little known! Whenever
we speak about a point of D,, we have in mind one of its representing
objects: subspace W, projection E, or symmetry operator S. We will use the
“*symbol to denote the Hermitean conjugate with respect to the indefinite
scalar product on V. Given § € D,,, the Hermitean conjugate of Y € L(V)
with respect to the positive-definite scalar product (u,v)s will be denoted
by Y?. Notice that Y5 = SY*S, Y* = SYS.

It is evident from the very definition that the unitary group U(V') of
(V,{, )), which is isomorphic to U(p,q), acts transitively on Dn with the

6 A review with a different emphasis can also be found in [Coquereaux and Jadczyk,
1990]

" The orthocomplements of the subspaces from D} are ¢ dimensional negative sub-
spaces. They form D; . For p = ¢ this is the second copy of D - as mentioned in the
discussion of time inversion above.
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stability group U(p) x U(q). The same is true about SU(p,q), which acts
effectively on D,,, so that

Dy, ~ SU(p,q)/S(U(p) x U(q))
. By differentiating the defining equations
S =957 §?=1, (1)

of D, we find that the tangent space T's at .S can be identified with the set
of operators X € L(V') such that

X=X* and XS+SX=0. (2)

Suppose now that p = ¢, thus n = 2p (the most symmetric case). Call
a basis {e;} in V isotropic if the scalar product of V in this basis reads
(v,w) = vIGw , where G is the block matrix

(0, up>
c,-(_”p ) (3)

Fix an isotropic basis, then D,, is isomorphic to the space of all px p complex
matrices T such that

{T* = T) >0, (4)

the isomorphism W <= T being given by

W:{(Tu

U

>: u € CP}. (5)

This parametrization defines complex structure on D,. In terms of the op-
erators X of Eq.(2) the complex structure Jg of the tangent space Ts at S
is given by the map Jg : X — X S5. Notice that (in the chosen isotropic
basis) the orthogonal subspace to Wr is

Tty
U

Wﬁ:{( ):uEC”}:WT:. (6)

D,, is naturally equipped with an U(V') — invariant positive definite Rieman-
nian metric:

9(X,Y)s = -Tr(XY), X,Y € Ts. (7)
That ¢ is positive definite follows from X = X* = — X5 thus

9(X,X)s = —Tr(XX)=Tr(XX)>0 for X #0. (8)
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D,, carries also an U(V') - invariant symplectic structure w: 8

W(X,Y)s = g(X,JsY)s = iTr(SXY). (9)

D, is a homogenecous Kahlerian manifold. For p = ¢ = 2 its interpretation
as a conformal-relativistic phase space comes from the T-parametrization:
9 with T as in Eq. (5), we write

q"
e (10)

T=1t'o,=(z"+ —~
q

where ¢* = ihp*, and o, = {I2,0} are the Pauli matrices. The condition
(4) reads now p? = (po)2 —p? > 0. Thus topologically, and also with respect
to the action of the Poincaré group, Dy is nothing but the future tube of
the Minkowski space, endowed with a nontrivial Riemannian metric. 1t is
to be stressed that special conformal transformations act on the variables
p** not in the way one would normally expect. Thus (2#,p*) refer to some
extended process rather than to a point event. Till now no interpretation of
the points of Dy in terms of space-time concepts, i.e. an interpretation that
would explain their transformation properties, has been given.

The second important representation of D,, is as a bounded domain in
CP’. This representation can be obtained via the Cayley transform from the
T-representation:

T -1

7 +1
7 o +1

Geometrically, Z can be thought of as an orthogonal graph of the subspace
Wy with respect to a fixed subspace Wy = Wip_;;. The condition (4) reads
now ZZ' < I. The topological boundary dD,, is (p? — 1) dimensional. The
Shilov boundary 0D, is defined as consisting of those points of dD, at
which functions analytic on the domain reach their maxima. 9D, is isomor-
phic to the set of p X p unitary matrices; thus, for p = 2, to the compactified
Minkowski space. dD,, carries a unique U(p,p)-invariant conformal struc-
ture of signature (p,p). For p = 2 - the one induced by a flat Minkowski
metric. The Cayley transform maps Minkowski space t* = z* 4 0 onto the
finite (affine) part of dD4. We see from Eq. (10) that Minkowski space can in-
terpreted as the very-high—-mass, or very-high-energy-momentum-transfer
limit of D4. Elementary micro-processes that are characterized by very high
energy-momentum transfers can be described as pure space-time events. It is
only for such processes that the standard concepts of space, time and causal-
ity are applicable. For generic micro-processes there is no distinction between

8 Although it is clear that w is a non-degenerate, U(V)-invariant two-form, to prove
that it is closed needs a computation.

® A justification for such a parametrization can be found in [Odzijewicz, 1976], [Co-
quereaux and Jadczyk, 1990]




BORN'’S RECIPROCITY IN THE CONFORMAL DOMAIN 137

space and time, no distinction between space-time and energy-momentum.
This would be an extreme manifestation of the Born reciprocity idea! Thus,
we propose to consider Dy as the replacement for space-time on the micro
scale. In an analogy to the harmonic oscillator, the (square of)) geodesic dis-
tance in Dy may play a role of the quark binding super-Hamiltonian. One
obtains in this way, again in the spirit of Born’s reciprocity, an interesting
and non-trivial version of the relativistic harmonic oscillator. Here we can
only sketch the idea. 1°

Given two points 5,.5" in D, the fundamental two-point object is the
unitary operator {(5’,9) = (S’S)%. Many of the algebraic properties of
these operators (including the case of n = 0o0) have been studied in [Jadczyk,
1971]. Notice that ¢(57,.9) is unitary w.r.t the indefinite scalar product of
V, but positive w.r.t both p.d. scalar products (u,v)s, (u,v)s. In the next
paragraph we will show that the map

X — t(5'S)Xt(S5'S)
is the geodesic transport from the tangent space at S to the tangent space
at 7.
3.1. REDUCTIVE DECOMPOSITION OF U(V)
For the Lie algebra of U(V') we have:
Lie(U(V))={Y € L(V):Y = -Y"}, (12)

while L(V') coincides with the complexified Lie(U(V')). The Killing form
B(X,Y) is then given by

B(X,Y) ~ Tr(XY). (13)
Given S € D, the isotropy subalgebra Ks at S is
Ks={X€eL(V): X" = -X,[X,5] = 0}. (14)
Every X € L(V) can be uniquely decomposed as
X =XI+iX3,

where
[X5,9]. =0.

The decomposition is given by

f

1
X¢ 5(SXS + X),

9 More can be found in the forthcoming Thesis of W. Mulak (cf. also [Mulak, 1992} for
an SU(1,1) version)
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;= —;-(SX,S’ ~ X).
We have (X*)E = (X£)*, and also
Tr(X{Ys)=0, VX,Y e L(V).

Therefore the orthogonal complement of K'g w.r.t. the Killing form B(X,Y)
is the subspace Mg C Lie(U(V)) given by

Ms={X€cL(V):X*=-X,X5+5X =0}.

3.2. #(S5’,5) AS THE GEODESIC PARALLEL TRANSPORT

We will show that #(5’,5) implements parallel transport from the tan-
gent space at § to that at S’, and also how it can be used for comput-
ing of the geodesic distance between the two points. First notice that each
geodesic through S is generated by a unique element X € Mg as follows (cf.
[Kobayashi, 1969], p.192):

t— S(t) = e X Se™ = X5, (15)

the last equality follows from X5+ $X = 0. If Y(¢) is a parallel vector field
along S(t), then (because D, is a symmetric space; see [Chavel, 1972], p.64)

Y(t) = $(t/2)S(0)Y (0)S(0)S(t/2), (16)
which by (15 ) gives

Y(t) = XY (0)e¥. (17)
On the other hand

((S(t),5(0)) = (S(1)8)7 = (#%)7 = ', (18)
and so

Y (t) = t(S(t), S)Y (0)(S(1),5)7", (19)

which proves that ¢(S5(¢)S) is the parallel transport operator. To find the
geodesic distance formula, notice that e2X S is a geodesic through S with
the tangent vector field § = 2Xe?X S of length —Tr(S8?) = 4Tr(X?). For
Tr(X?) = i, S(t) is parametrized by its length. But, from Eq.(18), we have

that tX = Int(S(t)5), t2X? = In*4(S(t)S), thus
dist(S, S(t)) = t = 4Tr(In?1(5(1)S))), (20)

dist(S,8') = Tr(In2(S$")). (21)
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4. Conclusions: quantum conformal oscillator

The relativistic quark model based on the Lorentz-covariant harmonic os-
cillator has been considered by many authors (cf. [Kim and Noz, 1991], and
references there). Extending Max Born’s reciprocity principle we propose to
investigate a similar model, but based on the geometry of Djy.

For simplicity let us consider the spinless two-body problem in D4. Quan-
tum states of the two-body system will be described by analytic functions!!
U(5,5") on Ds X Dy, integrable with respect to an appropriate invariant
measure. We take for super—-Hamiltonian H of the system the Toeplitz pro-
jection of dist(S,S")?. One can prove that by introducing the ‘center of mass
‘coordinates, the problem reduces to a one body problem. The spectrum of
H can be computed in terms of the coherent states on Dy (cf. [Mulak,
1992]). Such a model is nonrealistic, as it does not take into account spin.
To consider spinning quarks we have to take for a model Hilbert space the
space of sections of an appropriate vector bundle. The most natural one is
the holomorphic tautological bundle Q@ that associates to each S € Dy the
subspace Ws = {u € V' : Su = u}. This bundle is endowed with a natu-
ral Hermitean connection. The operators (59, 5’) provide a natural parallel
transport also in this bundle. Using its natural connection a Dirac-like op-
erator can be constructed on Q1. Much work must still have been done in
order to see if models constructed along these lines have anything to do with
reality.
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