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Abstract

We discuss geometro-algebraic aspects of the Berry’s phase phenomenon.
In particular we show how to induce parallel transport along states via Kaluza-
Klein mechanism in infinite dimensions.

1 Classical and Quantum Worlds

In recent times, an increasing amount of work is being devoted to developing a

new mathematical framework of noncommutative geometry, also called quantum

geometry. As a result, we have:

• quantum groups (Connes, Drinfeld, Ocneanu, Woronowicz, ... )

• quantum nets (Finkelstein,...)

• quantum logic (Birkhoff, Jauch, Piron, von Neumann, ... )

• quantum probability (Accardi, Davies, ... )

• quantum information (Ingarden, Urbanik, ... )

• quantum computers (Deutsch, ... )

• . . .

So, it becomes natural to ask this question: is everything going to be quantum

? A monist would probably answer this question ”yes, that is our lot, the ’true’

description is the quantum description ...”. Being neither a monist nor a dualist, I
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would like to reiterate the well known and so often repeated position taken by Niels

Bohr: that there is a cut between the classical and the quantum; a necessary cut;

where classical is, roughly, everything that can be expressed in terms of an ordinary

language; which can be communicated.

Thus we have the following

Dualistic Picture
Quantum Classical
Matter Language (= Knowledge)

Today, this is nothing but a picture. What we need is a theory, a theory that will

make the picture mathematically precise and quantitatively predictive. The dualism

we have in mind is similar to the one we know from General Relativity, namely the

dualism between Matter and Geometry. There is no better way to express its idea

than as is done by John Archibald Wheeler, who puts the story into these words:

• Geometry tells Matter how to Move while Matter tells Geometry how to Curve.

An analogous deep and simple statement concerning the picture above is still lack-

ing1. What we need, in particular, is an adequate mathematical theory of the

substance of (objective) knowledge - then a statement such as ”the wave function

describes state of knowledge” would have a precise meaning, devoid of any subjectiv-

ity. Although it is not directly related to our subject, perhaps it is, worth our while

to note that the picture above necessarily implies that we should deal, as strongly

stressed by Prigogine [2], with open systems.2

2 Classical Geometry of the Quantum Space

In quantum theory one associates operators with yes-no questions and with observ-

ables. However the question ”what is the state of the quantum system” is NOT a

quantum question. It pertains rather to the right hand side of the picture above, to

the classical domain. Of course, one could think of some ”quantum meta-system”,

where the question of the state of a ”system” would be represented by an opera-

tor (or ’super-operator’) - but then we could ask of the state of the meta-system,

meta-meta system, etc., ad infinitum. Until a self-consistent theory that closes this

1Cf. however the idea of interaction between World I and World III by Popper and Eccles [1]
2I am indebted to Rudolph Haag for an illuminating discussion on this subject
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infinite chain3 is established, we have, in the quantum framework, a distinguished

classical object: the State Space of the quantum system. Much of the properties4

of the system are determined by geometry of this space. Here we would like to

discuss only one topic related to this geometry: parallel transport along states. It

is convenient, for doing this, to use the algebraic language.

2.1 Observables and States

Observables and, more generally, operations are described, in this language, by the

elements of a von Neumann (i.e, weakly closed unital) operator algebra A (cf. e.g.

[6]). States of the system are described by normal positive forms on A. 5 We

wish to restrict our attention to faithful states, i.e. such states ω that ω(A?A) = 0

implies A = 0. The reason for this is that, anyhow, such states are dense in the

space of all states. In particular pure states can be approximated by faithful states,

although a faithful state will (except in trivial cases) never be pure. 6 Let S denote

the state space (if necessary one can normalize the elements of S by demanding

ω(I) = 1, where I is the unit element of A). The most characteristic concept

of a quantum theory is that of a superposition of states. But in order to make

superpositions we need state-vectors rather than states. Now, state-vectors are

vectors in a representation space of the algebra A. And even in the particular case

where all the faithful representations of A are equivalent, it does not mean that there

is a unique way of making a superposition of a state-vector from one representation

with a state-vector from another one. One needs a method of transporting state

vectors from one representation to another one. A possible framework for discussing

such questions is provided by the Gelfand-Naimark-Segal construction, where one

constructs a fibration of Hilbert spaces over the state space S.

2.2 GNS-construction.

Given a state ω ∈ S one constructs7 , out ofA and ω, a triple (Hω, πω,Ωω), whereHω

is a Hilbert space, πω is a ?-representation of A in Hω, and Ωω is a vector Hω, cyclic

3Some ideas in this direction can be found in Wheeler [3], see also Rössler [4]
4According to Mielnik [5], perhaps even all properties of the quantum system
5Let us recall that a complex linear form φ : A → C is positive if φ(A?A) ≥ 0,∀A ∈ A, and φ

is normal if Ai ≥ 0, A ↑ A implies φ(Ai) ↑ φ(A)
6Notice that our negligence of pure states is in accord with the remark above about open

systems.
7Cf. [6], especially Appendix A, for the relevant concepts
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with respect to πω(A) 8, and such that for all A ∈ A we have ω(A) = (Ωω, πω(A)Ωω).

2.3 The fibration P

In this way one gets a fibration of Hilbert spaces ω 7→ Hω over S with a distinguished

cross-section ω 7→ Ωω. There is a particular parallel transport in this fibration

related to Berry’s phase. To discuss this question it is convenient to introduce an

associated principal fibration according to the idea of Uhlmann [7, 8].

For each ω in S let Pω denote the set of all vectors ψ in Hω which represent ω

i.e. such that

ω(A) = (ψ, πω(A)ψ) (1)

for all A ∈ A. Let P = ∪{Pω : ω ∈ S}, then , by invoking the Tomita-Takesaki

theory 9, p : P → S can be made into a principal fibration with base S and structure

group U(A) - the group of unitary elements of the algebra A. This fibration has, by

the construction, a global cross-section ω 7→ Ωω, therefore one could think of it as of

a trivial fibration: P ≡ S×U(A). However, and this is still to be understood better,

there are other, apparently more relevant, local trivializations (and thus ”smooth

structures”) of P , which lead naturally to a non-trivial geometry.10

3 Example: The case of A = B(H)

Let H be a fixed (complex, separable) Hilbert space, and let A be the von Neumann

algebra of all bounded, operators on H. By the Gleason theorem, states on A are

represented by density matrices i.e. positive trace-class operators ρ on H. The GNS

construction can be, in this particular case, realized as follows:

Let HS denote the space of all Hilbert-Schmidt operators on H; then HS itself is

a Hilbert space when endowed with the scalar product: (A,B) = Tr(A?B). If ρ ∈ S
is a state (i.e. a positive trace class operator on H or, in short, a density matrix),

then ρ
1
2 – the positive square root of the positive operator ρ – is of Hilbert-Schmidt

class. Thus we can put, for each ρ in S

Hρ = HS , (2)

8i.e. πω(A)Ωω is dense in Hω
9For a brief exposition of the Tomita’s theory see e.g. [9]

10These problems will be discussed in Ref. [10]
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Ωρ = ρ
1
2 , (3)

and

πρ(A)B = AB (4)

for all A ∈ A(≡ B(H)),B ∈ Hρ(≡ HS).

Then automatically

ρ(A) = Tr(ρA) = Tr(ρ
1
2Aρ

1
2 ) = (Ωρ, πρ(A)Ωρ) (5)

i.e: the vector Ωρ = ρ
1
2 is the GNS representative of the state ρ. The total space of

the fibration P consists now of all invertible (with an unbounded inverse, in general)

Hilbert-Schmidt operators. The fiber projection p : P → S is given by

HS 3 W 7→ WW? ∈ S (6)

The unitary group U(A) ≡ U(H) acts on P via the right action: W 7→ WU , so that

p(WU) = WU(WU)? = WUU?W ? = WW ? = p(W ). (7)

The space P inherits from the Hilbert space HS , in which it is embedded, a Rie-

mannian metric. Given a curve γ(t) through W = γ(0), a tangent vector to γ at

W is given by an operator X = (dγ(t)/dt)|t=0. The scalar product of two tangent

vectors X, Y at W is then defined by

(X, Y )W = ReTr(X?Y ) =
1

2
Tr(X?Y + Y ?X). (8)

This scalar product makes P into a Riemannian space with U(H) -invariant Rie-

mannian metric. Therefore, as in Kaluza-Klein theories, we get automatically a

connection, i.e, a parallel transport11, in P . The horizontal subspaces are defined

as orthogonal complements to the vertical ones, where vertical means ’tangent to a

fiber’. It is instructive to look into an explicit formula which characterizes the hor-

izontal vectors, A vertical tangent vector at W is of the form (dγ(t)/dt)t=0, where

γ(t) = W exp(tY ), Y = −Y ? (9)

11Or, in other words, U(H) gauge field
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Thus X is horizontal at W if and only if for all Y = −Y ?

0 = 2(WY,X)W = Tr((WY )?X +X?WY ) = Tr(X?WY − YW ?X) (10)

= Tr((X?W −W ?X)Y )

which implies

X?W −W ?X = 0. (11)

This condition is automatically satisfied if X is of the form X = HW,H = H?. The

latter condition being not only sufficient but, in fact, also a necessary for Eq. (11)

to hold, we get the following, rather simple, characterization:

X vertical at W ←→ X = WA,A = −A? (anti-Hermitean)
X horizontal at W ←→ X = WH,H = H? (Hermitean)

It is this characterization that generalizes naturally from the particular case of A =

B(H) to a more general case of an arbitrary A.12 The following argument, due to

Uhlmann, indicates the relation of the parallel transport defined by Eq.(11) to the

Grassmann connection responsible for the Berry’s phase phenomenon.

4 Berry’s Phase.

Consider a path t 7→ E(t), where E(t) are orthogonal projections on H. Although

this path is not, strictly speaking, in P (projections are not invertible, even if they

are of trace class, i.e, finite dimensional), nevertheless our path can be, with an

arbitrary accuracy, approximated by a path in P . For each t, let13 |i, t >, i = l, 2, . . .

be an orthonormal basis in E(t)H, i.e, we have

E(t) =
∑
i

|i, t >< i, t| (12)

Suppose we want to choose t 7→ |i, t > in such a way that the path

W (t) =
∑
i

|i, t >< t, 0| (13)

12See the previous footnote
13In the following we use Dirac’s bra and ket notation
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is horizontal. Notice that

p(W (t)) = W (t)W (t)? =
∑
i,j

|i, t >< i, 0|j, 0 >< j, t| = E(t). (14)

The horizontality condition (11) gives then

0 = (dW )?W −W ?dW =
∑
|i, 0 >< i, t|

←
d |j, t > −|i, 0 >< i, t|

→
d |j, t >< j, 0|,

(15)

which, by taking into account < i, t|j, t >= δij, what implies

< i, t|
←
d |j, t >≡ − < i, t|

→
d |j, t > (16)

gives

< i, t|
→
d |j, t >= 0, (17)

or, equivalently,

E(t)
→
d |j, t >≡ 0. (18)

The last equation is the determining equation for the Grassmann connection. Its

relation to the adiabatic transport is discussed, in Ref. [11, 12, 13, 14].
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