
qu
an

t-
ph

/9
80

50
11

   
4 

M
ay

 1
99

8

The Piecewise Deterministic Process Associated to EEQT

Ph. Blanchard

Faculty of Physics and BiBoS, University of Bielefeld

Universitätstr. 25, D-33615 Bielefeld

A. Jadczyk

Inst. of Theor. Physics, University of Wroc law

Pl. Maxa Borna 9, PL-50 204 Wroc law

R. Olkiewicz ∗

Faculty of Physics and BiBoS, University of Bielefeld

Universitätstr. 25, D-33615 Bielefeld

Abstract

In the framework of event enhanced quantum theory (EEQT) a probabilistic

construction of the piecewise deterministic process associated with a dynam-

ical semigroup is presented. The process describes sample histories of indi-

vidual systems and gives a unique algorithm generating time series of pointer

readings in real experiments.

Key words: quntum measurements, open systems, completely positive semigroups,

piecewise deterministic processes.

∗permanent address: Institute of Theoretical Physics, University of Wroc law, PL 50-204 Wroc law,

Poland

1



PACS: 02.50.Ey , 03.65.Bz , 03.65.Ca

2



I. INTRODUCTION

One of the primary aims of quantum measurement theory is to understand the mechanism

by which potential properties of quantum systems become actual. This is not an abstract

or philosophical problem. Nowadays it is possible to carry out prolonged observations of

individual quantum systems. These observations provide us with time series of data, and a

complete theory must explain the mechanism by which these time series are being generated;

must be able to ”simulate” the natural process of events generation. There are several

methods of approaching this problem. John Bell1 for instance, sought a solution in hidden

variable theories of Bohm and Vigier, his own idea of beables, and also in the spontaneous

localization idea of Ghirardi, Rhimini and Weber2. More recently, in a series of papers, two

of us (Ph. B. and A.J.)3–5 proposed a formalism that goes in a similar direction but avoids

introducing other hidden variables beyond the wave function itself. Our “Event Enhanced

Quantum Theory”(in short: EEQT) describes a consistent mode of coupling between a

quantum and a classical system, in which a classical system is one described by an Abelian

algebra. We suggest that a measurement process is, by definition, a coupling of a quantum

and a classical system, where transfer of information about quantum state to the classical

recording device is mathematically modelled by a dynamical semigroup (i.e. semigroup of

completely positive and trace preserving maps) of the total system. It is instructive to see

that such a transfer of information cannot, indeed, be accomplished by a Hamiltonian or,

more generally, by any automorphic evolution1. To this end consider a system described by

1For a discussion of this fact in a broader context of algebraic theory of superselection sectors –

cf. Landsman6,Sec.4.4. Cf. also the no–go result by Ozawa7
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a von Neumann algebra A with centre Z. Then Z describes the classical degrees freedom

of the system. Let ω be a state of A, and let ω|Z denote its restriction to Z. Let αt be

an automorphic time evolution of A, and denote ωt = αt(ω), where the dual evolution of

states is given by αt(ω)(A) = ω(αt(A)). Each αt is an automorphism of the algebra A,

and so it leaves its centre invariant: αt : Z → Z. The crucial observation is that, because

the evolution of states of Z is dual to the evolution of the observables in Z, and we have

αt(ω)|Z = αt|Z(ω|Z), the restriction ωt|Z depends only on ω0|Z . In other words the future

state of the the classical subsystem depends only on the past state of that subsystem and

– not on its extension to the total system. This shows that no information transfer from

the total system to its classical subsystem is possible – unless we use more general, non–

automorphic evolutions. The idea of describing a quantum measurement as a two-way

coupling between quantum system and a classical system occured before to several authors

– we mention only the classical papers by Sudarshan8 – but never within the completely

positive semigroup approach.

EEQT has several points of contact with other approaches. The mathematical model

was a result of our studies of the papers of Jauch9,10, Hepp11, Piron12–14 , Gisin15,16 and

Araki17 , and also of the papers by Primas (cf.18,19). It was then found that our master

equation describing a coupled quantum–classical system is of the type already well known

to statisticians. In his monographs20,21 dealing with stochastic control and optimization M.

H. A. Davis, having in mind mainly queuing and insurance models, described a special class

of piecewise deterministic processes that was later found to fit perfectly the needs of quantum

measurement theory, and that reproduced the master equation postulated originally by the

two of us in3.
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In22 it was shown that the special class of couplings between a classical and quantum system

leads to a unique piecewise deterministic process with values on E-the pure state space of the

total system. That process consists of random jumps, accompanied by changes of a classical

state, interspersed by random periods of Schrödinger-type deterministic evolution. The

process, although mildly nonlinear in quantum wave function ψ, after averaging, recovers the

original linear master equation for statistical states. The action of the dynamical semigroup

Tt is given in term of the process in the following way

Tt(Px) =
∫
P (t, x, dy)Py,

where P (t, x, dy) is the transition probability function of the process and y → Py is a

tautological map, which assigns to every point y ∈ E a one-dimensional projector Py. The

main objective of this paper is to provide a probabilistic construction of the process and

discuss some of its properties and applications. The paper is organised as follows. In sec. II

the formalism for classical-quantum interactions is presented. In sec. III the probabilistic

construction of the PD process is described and some of its properties are analysed. In

sec. IV the classical part of the process is discussed. We also present an example of direct

photodetection. Concluding remarks are given in sec. V.

II. THE FORMALISM

We start by recalling the theorem by Christensen and Evans that describes the most

general form of a generator of a completely positive semigroup of transformations of an

algebra with an notrivial centre. The theorem generalizes the classical results of Gorini,

Kossakowski and Sudarshan23 and of Lindblad24 to the case of arbitrary C?–algebra, and
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it states that eseentially the Linblad form of the generator holds also for this more general

case. We quote the theorem for the convenience of the reader25:

Theorem 1 (Christensen – Evans) Let αt = exp(Lt) be a norm–continuous semigroup

of CP maps of a C?– algebra of operators A ⊂ B(H). Then there exists a CP map φ of A

into the ultraweak closure Ā and an operator K ∈ Ā such that the generator L is of the

form:

L(A) = φ(A) +K?A+AK . (1)

Let us apply this theorem to the case of A being a von Neumann algebra, and the

maps αt being normal. Then φ can be also taken normal. We also have Ā = A, so that

K ∈ A. Let us assume that αt(I) = I or, equivalently, that L(I) = 0. It is convenient to

introduce H = i(K − K?)/2 ∈ A, then from L(I) = 0 we get K + K? = −φ(I), and so

K = −iH − φ(1)/2. Therefore we have

L(A) = i [H,A] + φ(A)− {φ(1), A}/2, (2)

where { , } denotes anticommutator.

We now apply the above formalism to the hybrid system which is a direct product of

the classical and quantum mechanical one. The physical idea behind such a model is that

a quantum measurement is to be defined as a particular coupling between a quantum and

a classical system. We continuously observe the classical system, notice changes of its pure

states (we call these changes ”events”) and from these we deduce properties of the coupled

quantum system. Details can be found in Ref.4,5. One can think of events as ‘clicks’ of a
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particle counter, sudden changes of the pointer velocity, changing readings on an apparatus

LCD display. The concept of an event is of course an idealization - like all concepts in

a physical theory. Let us consider the simplest situation corresponding to a finite set of

possible events. The space of pure states of our classical system C, denoted by Sc, has m

states, labeled by α = 1, . . . ,m. Statistical states of C are probability measures on Sc – in

our case just sequences pα ≥ 0,
∑
α pα = 1.

The algebra of observables of C is the algebraAc of complex functions on Sc – in our case just

sequences fα, α = 1, . . . ,m of complex numbers. We use Hilbert space language even for the

description of the classical system. Thus we introduce an m-dimensional Hilbert space Hc

with a fixed basis, and we realizeAc as the algebra of diagonal matrices F = diag(f1, . . . , fm).

Statistical states of C are then diagonal density matrices diag(p1, . . . , pm), and pure states

of C are vectors of the fixed basis of Hc. Events are ordered pairs of pure states α → β,

α 6= β. Each event can thus be represented by an m×m matrix with 1 at the (α, β) entry,

zero otherwise. There are m2 −m possible events. Let us point out that important here is

the discretness of the classical system not its finitness. We can easily generalize the above

to the case when the classical points form, for example, the set of natural numbers. Then

the classical algebra becomes l∞ (uniformly bounded sequences) while statistical states are

positive elements from l1 (summable sequences).

We now come to the quantum system. Let Q be the quantum system whose bounded

observables are from the algebra Aq of bounded operators on a Hilbert space Hq. In this

paper we will assume Hq to be finite dimensional . Pure states of Q are unit vectors in

Hq; proportional vectors describe the same quantum state. They form a complex projective

space CP (Hq) over Hq. Statistical states of Q are given by non–negative density matrices
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ρ̂, with Tr (ρ̂) = 1.

Let us now consider the total system T = Q × C. For the algebra At of observables

of T we take the tensor product of algebras of observables of Q and C: At = Aq ⊗ Ac.

It acts on the tensor product Hq ⊗ Hc = ⊕mα=1Hα, where Hα ≈ Hq. Thus At can be

thought of as algebra of diagonal m × m matrices A = (aαβ), whose entries are quantum

operators: aαα ∈ Aq, aαβ = 0 for α 6= β. Statistical states of Q × C are given by m ×m

diagonal matrices ρ = diag(ρ1, . . . , ρm) whose entries are positive operators on Hq, with the

normalization Tr (ρ) =
∑
α Tr (ρα) = 1. Duality between observables and states is provided

by the expectation value < A >ρ=
∑
α Tr (Aαρα).

We will now generalize slightly our framework. Indeed, there is no need for the quantum

Hilbert spaces Hα, corresponding to different states of the classical system, to coincide. We

will allow them to be different in the rest of this paper. Intuitively such a generalization

corresponds to the idea that a phase transition can accompany the event. We denote nα =

dim(Hα).

We consider now dynamics. It is normal in quantum theory that classical parameters

enter quantum Hamiltonian. Thus we assume that quantum dynamics, when no information

is transferred from Q to C, is described by Hamiltonians Hα : Hα −→ Hα, that may depend

on the actual state of C (as indicated by the index α). We will use matrix notation and

write H = diag(Hα). Now take the classical system. It is discrete here. Thus it can not

have continuous time dynamics of its own.

The coupling of Q to C is specified by a matrix V = (gαβ), where gαβ are linear operators:

gαβ : Hβ −→ Hα. We assume gαα = 0. This condition expresses the simple fact: we do

not need dissipation without receiving information (i.e without an event). It plays a crucial
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role in the prove of uniqueness of the piecewise deterministic process that is associated to

our master equation. Although the present paper is concerned with the existence and with

the important mathematical properties of the process, the uniqueness is important from the

point of view of the physical interpretation. It tells us that in our case, contrary to the

situation encountered in quantum optics master equations, all the relevant information is

contained in the master equation - so that there is a unique process describing the random

laws governing the individual system under observation. More on this uniqueness vs. non–

uniqueness problem can be found in Ref.22.

To transfer information from Q to C we need a non–Hamiltonian term which provides

a completely positive (CP) coupling. As in Ref.4,5 we consider couplings for which the

evolution equation for observables and for states is given by the Lindblad form:

Ȧα = i[Hα, Aα] +
∑
β

g?βαAβgβα −
1

2
{Λα, Aα}, (3)

or equivalently:

ρ̇α = −i[Hα, ρα] +
∑
β

gαβρβg
?
αβ −

1

2
{Λα, ρα}, (4)

where

Λα =
∑
β

g?βαgβα. (5)

The above equations describe statistical behavior of ensembles. Individual sample histo-

ries are described by the following algorithm:

Suppose that at time t0 the system is described by a normalized quantym state vector ψ0 and

a classical state α. Then choose a uniform random number p ∈ [0, 1], and proceed with the
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continuous time evolution by solving the modified Schrödinger equation

ψ̇t = (−iHα −
1

2
Λα)ψt

with the initial wave function ψ0 until t = t1, where t1 is determined by

t1∫
t0

(ψt, Λαψt)dt = p

Then jump. When jumping, change α→ β with probability

pα→β = ‖gβαψt1‖2/(ψt1 , Λαψt1)

and change

ψt1 → ψ1 = gβαψt1/‖gβαψt1‖.

Repeat the steps replacing t0, ψ0, α with t1, ψ1 and β.

This leads to a stochastic process, in which the randomness appears as point events i.e. there

is a sequence of random occurences at random times T1 < T2 < ..., but there is no additional

component of uncertainty between these times. It consists of a mixture of deterministic mo-

tion and random jumps. A class of such processes is called piecewise deterministic processes

(PDP)26. The motion between jumps is determined by a complete vector field X on the

pure state space E of the total system. The jump mechanism is determined by two further

components: a jump rate λ and a transition kernel Q. The vector field X generates a flow

φ(t, x) in E, which is given by φ(t, x) = γx(t), where γx(t) is the integral curve of X starting

at point x ∈ E. The jump rate is a measurable function λ : E → R+ ∪ {0} such that for

any x ∈ E the mapping t → λ ◦ φ(t, x) is integrable at least near t = 0. The set of those

x ∈ E for which λ(x) = 0 we denote by E0. The transition kernel Q : B(E)× E → [0, 1]

satisfies the following conditions:
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a) Q(E, x) = 1 ∀x ∈ E,

b) Q({x}, x) = 0 if x ∈ E \ E0 and Q({x}, x) = 1 for x ∈ E0,

c) ∀Γ ∈ B(E) the map x→ Q(Γ, x) is measurable.

Here B(E) denotes the Borel σ-algebra on E. In our case E =
⋃̇

CPα, α = 1, 2, ...,m and

we have the following formulas for X, λ and Q:

Xf(ψ, α) =
d

dt
f(

exp(−iHα − 1
2
Λα)ψ

‖ exp(−iHα − 1
2
Λα)ψ‖, α)|t=0

λ(ψ, α) =< ψ, Λαψ >

Q(dφ, β; ψ, α) =
‖gβαψ‖2

λ(ψ, α)
δ(φ − gβαψ

‖gβαψ‖
)dφ

if (ψ, α) ∈ E \ E0 and δ denotes the Dirac measure.

The triple (X, λ, Q) is called local characteristic of the process. Its infinitesimal generator

is given by

Lf(x) = Xf(x) + λ(x)
∫
E

[f(y) − f(x)]Q(dy, x)

and produces sample paths exactly such as described by the above algorithm.

III. THE PD PROCESS

In this section we present the detailed construction of the process introduced in sec. II

and investigate some of its properties. General references on stochastic processes are27,28.

Probabilistic concepts can be found in29,30.

At first we construct a probabilistic space (Ω, A) (compare31 for a similar construction for

Markov decision processes). Let Ω be a set of all sequences (t0, x0; t1, x1; . . .), which are finite

or infinite, and such that t0 = 0, tn ≤ tn+1, tn ∈ Ṙ+ = [0,∞], xn ∈ E for all n ∈ N ∪ {0}.
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If a sequence is finite i.e. ω = (t0, x0; . . . , tn, xn) then we put

tn+1 = tn+2 = . . . =∞, xn+1 = xn+2 = . . . = xn

It follows that Ω can be embeded into an infinite product space
∞∏
n=0

Ωn, where Ω0 = {0}×E

and Ωn = Ṙ+ × E. On each Ωn we have a natural σ-algebra An given by B(Ṙ+) ⊗ B(E).

We define a σ-algebra A on Ω as (⊗∞n=0An)|Ω.

Now let us construct a family of probabilistic measures Px on (Ω, A) with respect to an

initial state x ∈ E. They will be determined by the deterministic drift φ, the jump rate λ

and the transition kernel Q. Because we want to use the Ionescu Tulcea theorem29 we have

to define transition kernels between (Ωn, An) and (Ωn+1, An+1). We do it step by step.

On Ω0 we take the Dirac measure P0 = δx. Let Λ(t, x) :=
∫ t

0 λ(φ(s, x))ds and let us define

Fx(t1) = 1− exp(−Λ(t1, x))

Kx(t1, dx1) = Q(dx1, φ(t1, x))

As the transition kernel between (Ω0,A0) and (Ω1,A1) we take

P 1
0 (x, B1 × Γ1) =

∫
B1

∫
Γ1

Kx(t1, dx1)dFx(t1)

for any B1 ∈ B(Ṙ+) and any Γ1 ∈ B(E). In the second step we define

F(t1,x1)(t2) =


0, if t1 > t2

1− exp(−Λ(t2 − t1, x1)), if t1 ≤ t2

K(t1,x1)(t2, dx2) = Q(dx2, φ(t2 − t1, x1))

and put

P 1
2 (t1, x1; B2 × Γ2) =

∫
B2

∫
Γ2

K(t1,x1)(t2, dx2)dF(t1,x1)(t2)
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It is clear that P 1
2 is a transition kernel between (Ω1,A1) and (Ω2,A2). In the similar way

we construct higher kernels Pn
n+1. By Ionescu Tulcea theorem there is a unique probabilistic

measure Px on (
∞∏
n=0

Ωn, ⊗∞n=0An) such that for every measurable rectangle A = A0 ×A1 ×

. . .× An × Ωn+1 × . . . the following identity

Px[A] = δx(A0)
∫
A1

P 1
0 (x; dt1, dx1) · · ·

∫
An

P n−1
n (tn−1, xn−1; dtn, dxn)

is satisfied. It is clear from the above formula that Px is concentrated on Ωx = {ω ∈ Ω :

x0 = x}, x ∈ E. Moreover Px is measurable with respect to x.

To investigate properties of the above measure let us define a sequence of measurable random

variables

Tn : Ωx → Ṙ+ Tn(ω) = tn, Xn : Ωx → E Xn(ω) = xn

The distributions of T0 and X0 are Dirac measures concentrated in {0} and {x} respectively.

The distribution dFT1 of T1 is given by

Px[T1 ≤ t] = 1− exp(−Λ(t, x))

and the conditional expectation of X1 given T1 equals to

Ex[1{X1⊂Γ}|T1] = Q(Γ, φ(T1, x))

Here 1{·} denotes an idicator function of a given set. The above equation can be also written

as

dFX1|T1(y|t) = Q(dy, φ(t, x)),

where the left hand side is the conditional distribution of X1. For arbitrary n ∈ N we have

the following formulas:

Ex[1{Tn+1≤t}|Tn, Xn] =


0 if t < Tn

1− exp(−Λ(t− Tn, Xn)) if t ≥ Tn
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Ex[1{Xn+1⊂Γ}|Xn, Tn+1] = Q(Γ, φ(Tn+1, Xn))

It follows that Px[T1 = 0] = 0 so T1 > 0 a.s. Because, after a jump, process starts again so

Tn < Tn+1 a.s. for every n. This fact can be also derived from the following equality:

Px[Tn+1 − Tn > s] = Ex[exp(−Λ(s, Xn))]

It means that a set of paths with two or more simultaneous jumps has zero probability.

Moreover, because Q({x}, x) = 0 for every x ∈ E \E0 so with probability one the process

can not jump to the state it is deterministically approaching. There are no jumps from the

set E0 at all.

Let us calculate some physically interesting probabilities. For example the probability that

there is no jump up to time t equals to

Px[T1 > t] = exp(−
t∫

0

λ(φ(s, x))ds)

Because

Px[T2 > t] = Px[T1 > t] + Ex[1{T1≤t} exp(−Λ(t− T1, X1)]

and, on the other hand,

Px[T2 > t] = Px[T2 > t ∧ T1 ≤ t] + Px[T2 > t ∧ T1 > t]

so the probability that exactly one jump happens up to time t is given by

Px[T2 > t ∧ T1 ≤ t] =

t∫
0

1{u≤t}dFT1(u)
∫
E

exp(−Λ(t− u, y))dFX1|T1
(y|u) =

∫ t

0

∫
E
λ(φ(u, x)) exp(−Λ(u, x)) exp(−Λ(t− u, y))Q(dy, φ(u, x))du

Now let us define a random variable T∞ = limn→∞ Tn. For every t < T∞ we construct the

process xt by putting

xt(ω) = φ(t− Tk(ω), Xk(ω)) if Tk(ω) ≤ t < Tk+1(ω)
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In general we can have the process with the lifetime. We show that in our case, due to the

boundness of the jumping rate, T∞ =∞ a.s. Let C = supx∈E λ(x). Then for every t > 0

sup
x∈E

(1− exp(−Λ(t, x)) ≤ 1 − e−Ct

Let us fix t and denote C1 = 1 − e−Ct, which is strictly less then 1. Then

Px[Tn+1 ≤ t] = E[1{Tn≤t}(1− exp(−Λ(t− Tn, Xn))] ≤ C1Px[Tn ≤ t] ≤ Cn+1
1

by induction. It implies that

Px[
∞⋂
n=0

{Tn ≤ t}] = lim
n→∞

Px[Tn ≤ t] = 0

It follows that xt is defined for all t ∈ R+ and is a cadlag process i.e. possesses right

continuous with left limits paths.

To end the construction of ingredients needed for a Markov process let us introduce a natural

filtration on Ωx given by F0
t = σ{Xs, s ≤ t} and take F0

∞ = ∨tF0
t . Let Ft and F∞ denote

the Px-completion of F0
t and F0

∞ respectively. Because, after a jump, the process evolves

deterministically, so the filtration (Ft)0≤t≤∞ is right continuous. Thus we arrive at:

Theorem 1.

a) The filtered probability space (Ω, F∞, Px, Ft) satisfies the usual hypothesis for every

x ∈ E.

b) xt is an adapted and cadlag process.

c) (Ω, F∞, Px, Ft, xt) is a strong Markov process with infinite lifetime.

Proof: only the Markov property need to be checked. It follows from two basic properties of

xt. The distribution of T1 depends only on the current state xt and, after a jump, process

starts again. For more details see26.
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Now we show another important property of the process xt, namely the quasi-left-

continuity. Let us define a random set 4 = {(t, ω) : xt− 6= xt}, where xt− is the left

limit of xt. Then

ν(ω; dt, dx) =
∑
s

14(s, ω)δ(s,xs(ω))(dt, dx),

where δ(s,x) is the Dirac measure on R+ × E concentrated in (s, x), is an integer-valued

random measure. It leeds to a simple point process Ñt given by

Ñt = ν([0, t]× E) =
∞∑
n=1

1{Tn≤t}

Because T∞ = ∞ a.s. so Ñt is a.s. finite valued. It is also integrable because

Ex[Ñt] =
∞∑
n=1

nPx[Tn ≤ t] ≤
∞∑
n=1

nCn
1 < ∞

Moreover it was shown in26 that the compensator of Ñt is equal to
∫ t

0 λ(xs)ds and so Mt :=

Ñt−
∫ t

0 λ(xs)ds is an (Px, Ft)-martingale. Using this fact it can be calculated that the dual

predictible projection of ν is given by

νp(ω; dt, dx) = Q(dx, xt(ω))λ(xt(ω))dt

Thus νp(ω; {t}, E) = 0 and so xt is quasi-left-continuous28. Thus we proved that xt is a

Hunt process. Moreover xt is a Feller process i.e. the transition kernel of xt generates a

strongly continuous semigroup of contractions on the space of all continuous functions on

E, see32,33.

IV. STOCHASTIC REPRESENTATION OF THE CLASSICAL SYSTEM

In this section we discuss some properties of the stochastic process associated with the

measuring apparatus. Let C be a state space of the classical system i.e. C = {1, 2, ...,m}.
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Let us define a {0, 1}-valued process pαt by

pαt (ω) = δαπ(xt(ω)),

where δαβ is the Kronecker delta and π denotes the canonical projection π : E → C. By

P (t, x, Γ), x ∈ E and Γ ⊂ E we denote the transition kernel of the process xt. It was shown

in [jakol] that P (t, x, Γ) is associated with the dynamical semigroup Tt and so

Tt(Px) =
∫
E

PyP (t, x, dy)

Here Py is the one-dimensional projector corresponding to y ∈ E i.e. Py = |y >< y|. We

show that the average of pαt gives the probability of finding the total system at time t in a

classical state α. Let pαt = E[pαt ]. Then

pαt =
∫
E

δαπ(y)P (t, x, dy) =
∫

CPα

Tr(Py)P (t, x, dy) =

Tr(
∫

CPα

PyP (t, x, dy)) = Tr(Tt(Px)α)

Now we derive a differential equation for pαt . Let us start with the following example.

Example 1. Let C = {1, 2}. Then a change of the process pαt , α = 1, 2, is given by

dp1
t = −p1

t−dÑt + p2
t−dÑt, p1

0 = 1

dp2
t = −p2

t−dÑt + p1
t−dÑt, p2

0 = 0,

where Ñt is the counting process introduced in the previous section. Solving the above

equations we get

p1
t =

1 + (−1)Ñt

2
, p2

t =
1− (−1)Ñt

2

Because Mt = Ñt−
∫ t

0 λ(xs)ds is a martingale so we get the following equations for averages

pαt :

dp1
t = E[(−p1

t + p2
t )λ(xt)]dt
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dp2
t = E[(−p2

t + p1
t )λ(xt)]dt

When the intensity is a constant function equal λ they reduce to

dp1
t = λ(−p1

t + p2
t )dt, dp2

t = λ(−p2
t + p1

t )dt

with solutions given by

p1
t =

1 + e−2λt

2
, p2

t =
1− e−2λt

2

In a general case we have that p1
tλ(xt) = λ1(xt) and p2

tλ(xt) = λ2(xt), where λα(xt) =<

xt|Λα|xt >. So

dp1
t = −E[λ1(xt)]dt + E[λ2(xt)]dt

dp2
t = −E[λ2(xt)]dt + E[λ1(xt)]dt

To solve these equations we have to know the distribution of the process xt.

The above equations suggest the following generalization.

Proposition 1.

dpαt = −E[λα(xt)]dt +
∑
β 6=α

E[‖gαβxt‖2]dt

Proof: Because pαt = Tr(ρα), ρα = Tt(Px)α so

dpαt
dt

= Tr(ρ̇α) = Tr(−i[Hα, ρα] − 1

2
{Λα, ρα} +

∑
β 6=α

gαβρβg
∗
αβ) = Tr(Λα)ρα) +

∑
β 6=α

Tr(g∗αβgαβρβ)

On the other hand

E[λα(xt)] =
∫

CPα

< y|Λα|y > P (t, x, dy) = Tr(ΛαTt(Px)α)

E[‖gαβxt‖2] =
∫

CPβ

< y|g∗αβgαβ|y > P (t, x, dy) = Tr(g∗αβgαβTt(Px)β)

18



so the assertion follows.

The adventage of this stochastic representation of Tr(Tt(Px)α) is that we can predict the

future of the classical system if we know its past. Let us point out that the classical com-

ponent of xt usually is not a Markov process.

Let us assume that we start at t = 0 with a quantum state x ∈ CPα0, and up to the present

we have observed the following classical trajectory

(t0 = 0, α0), (t1, α1), ..., (tk ≤ t, αk)

Then the probability pα that the next jump will go to α can be obtained as follows. Let us

calculate

x1 =
gα1α0φ(t1, x)

‖gα1α0φ(t1, x)‖ , ... xk =
gαkαk−1

φ(tk − tk−1, xk−1)

‖gαkαk−1
φ(tk − tk−1, xk−1)‖

and xt = φ(t− tk, xk) for t ≥ tk. Then

pα = E[‖gααk(xTk+1
)‖2] =

∞∫
0

dFTk+1|Tk,Xk(t|tk, xk)‖gααk(xt)‖2 =

∞∫
tk

dt exp(−
t∫

tk

λ(xs)ds)‖gααk(xt)‖2

These probabilities can be also used to determine an initial quantum state. Let us assume

that we start at t = 0 with a classical index α0 and with one of the following pure quantum

states xi ∈ CPα0, i = 1, 2, ..., n. The probability that the first jump will change the classical

index onto α is given by

piα = E[‖gαα0(xT1)‖2], T0 = 0, X0 = xi

In the similar way we calcutate probabilities piα2α1 that the first jump will go to α1 and

the second one to α2 and so on. Taking appropriate gβα we can make these probabilities
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significantly different for each initial quantum state xi and thus conclude which one is the

most probably by observing the classical trajectory.

Example 2. Let us consider the fluorescent photons emitted by a single, two-level atom

that is coherently driven by an external electromagnetic field. It is known that the quantum

system evolves from the ground state in a dissipative way. When a photoelectric count is

recorded by a photoelectric detector (we assume the detector efficiency to be equal one), the

atom returns to the ground state with the emission of one photon. Thus, after the emission

of each photon, the atom starts its evolution from the same state. We describe this situation

using the probabilistic framework introduced in the previous sections.

The quantum system as a two-state system is represented by 2× 2 complex matrices. The

classical system, which counts emitted photons we describe by an infinite sequence of num-

bers n = 0, 1, 2, ... Hence the state space of the total system is equal to

E =
∞⋃
n=0

CP 2

The time evolution of the quantum system is described (for every classical index n) by the

modified Schrödinger equation

ψ̇t = −iĤψt = (−iH − 1

2
Λ)ψt,

where Λ = γA∗A and

A =

 0 0

1 0



20



The coupling operators gnm are given by gn+1,n = A and gmn = 0 if m 6= n+ 1. A solution

for ψt can be written as ψt = Û (t)ψ0, where34

Û(t) = e−itĤ = e−γt/4

 cosµt − γ
4µ

sinµt i Ω
2µ

sinµt

i Ω
2µ

sinµt cosµt + γ
4µ

sinµt


Here γ is the relaxation rate, Ω is Rabbi frequence and µ =

√
Ω2 − (γ/2)2. The ground

state ψ0 is given by

ψ0 =

 0

1


The deterministic flow is defined by

φ(t, (ψ0, n)) =
Û(t)ψ0

‖Û(t)ψ0‖

for every n ∈ N ∪ {0}. The jump rate λ is given by λ((ψ, n)) = < ψ, Λψ > for all n and

the transition kernel

Q(dφ, m; ψ, n) = δmn+1δ(φ − ψ0)dφ

Because of the uniqueness of a jump after the emission of a photon the classical component

of the piecewise deterministic process of the total system is also a Markov process. Let us

derive the distribution of the waiting time between jumps. In this case it is exactly the

distribution of the random variable T1. Thus

F (t) = 1 − exp[−Λ(t, (ψ0, 0)) = 1 − exp[−
t∫

0

λ(φ(s, (ψ0, 0))ds]

= 1 − exp[−
t∫

0

<
Û(s)ψ0

‖Û(s)ψ0‖
, γA∗A

Û (s)ψ0

‖Û(s)ψ0‖
> ds]

Because

d

ds
‖Û(s)ψ0‖2 = < −iĤÛ (s)ψ0, Û(s)ψ0 > + < Û(s)ψ0, −iĤÛ (s)ψ0 >
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= < Û(s)ψ0, i(Ĥ
∗ − Ĥ)Û (s)ψ0 > = − < Û(s)ψ0, γA

∗AÛ(s)ψ0 >

so we obtain that

F (t) = 1 − exp[

t∫
0

(
d

ds
log ‖Û(s)ψ0‖2)ds] = 1 − ‖Û(s)ψ0‖2

Its density equals to

f(t) = γ‖AÛ(t)ψ0‖2 = γ
Ω

4µ2
sin2(µt) exp(−γt/2)

It is exactly the waiting time density obtained in35.

Now let us consider the time evolution of the averages of the classical components of

the process pn(t). In the present context they have a simple interpretation: pn(t) is the

probability that n photoelectric counts are recorded in the time interval [0, t]. Hence

pn(t) = P [Tn ≤ t ∧ Tn+1 > t] and so

p0(t) = ‖Û (t)ψ0‖2

p1(t) =

t∫
0

p0(s)f(t− s)ds = (p0 ∗ f)(t)

p2(t) =

t∫
0

ds2p0(s2)

t−s2∫
0

f(s1)f(t− s2 − s1)ds1 = (p0 ∗ f ∗ f)(t)

and so on. In the above we extended functions p0(t) and f(t) onto the whole real line

(−∞, ∞) by putting value zero for negative arguments. The sign ∗ denotes the convolution.

Taking the Laplace transform of pn(t) with respect to variable t we obtain that

p̂n(λ) =

∞∫
0

e−λtpn(t)dt = p̂0(λ)[f̂ (λ)]n

which coincides with the formula given in35 (see also34).
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V. CONCLUDING REMARKS

The crucial concept of our approach to quantum measurement is that of a classical and

irreversible event. It is taken into account by including from the begining classical degrees of

freedom. From the structural point of view such a coupling (EEQT) consists of the following

essential ingredients:

- tensoring of a non-commutative quantum algebra of observables with a classical commu-

tative algebra (or, more generally, taking the classical Abelian algebra as the center of the

total algebra of observables),

-replacing Schrödinger unitary dynamics with a completely positive semigroup describing

the time evolution of ensembles,

- interpreting the continuous time evolution of statistical states in term of a piecewise de-

terministic process with values in the pure state space of the total system,

- applying the uniqueness theorem for deducing the piecewise deterministic algorithm gen-

erating sample path of an individual system.

It gives a minimal extension of the quantum theory that ensures the flow of information from

the quantum system to the classical variables. Moreover it provides a way for calculating

numbers needed in real experiments and also allows for a natural mathematical modelling

of a feedback during experiments with quantum systems.

Let us also discuss two possible generalizations of the above scheme. The first one concerns

the dimension of the quantum Hilbert space. Here, for simplicity, we were using only finite

dimensional Hilbert spaces, but from the construction it is quite clear that this assumption

was not essential. We could admit infinite dimensional Hilbert spaces and take all the nec-
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essary care for the formulas to be well defined, for example the infinite series of operators to

be convergent. Moreover we can allow the Hamiltonian operator to be unbounded. Also the

existence of the deterministic flow can be established since CP (Hq) is an infinite dimensional

Hilbert manifold, that is it can be covered by a family of open sets each of which is homeo-

morphic to an open ball in a Hilbert space. The second generalization is connected with the

discretness of the classical system. There are examples of generators of completely positive

semigroups of the joint system, when the classical subsystem is described by an algebra of

continuous functions on a symplectic manifold36. But then the probabilistic description of

the dynamics is, in this case, more complicated and will be discussed in a separate paper.
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