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Abstract

The law of track formation in cloud chambers is derived from the
Liouville equation with a simple Lindblad’s type generator that de-
scribes coupling between a quantum particle and a classical, contin-
uous, medium of two–state detectors. Piecewise deterministic ran-
dom process (PDP) corresponding to the Liouville equation is derived.
The process consists of pairs (classical event, quantum jump), inter-
spersed with random periods of continuous (in general, non–linear)
Schrödinger’s–type evolution. The classical events are flips of the de-
tectors – they account for tracks. Quantum jumps are shown, in the
simplest, homogeneous case, to be identical to those in the early spon-
taneous localization model of Ghirardi, Rimini and Weber (GRW).
The methods and results of the present paper allow for an elementary
derivation and numerical simulation of particle track formation and
provide an additional perspective on GRW’s proposal.
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1 Introduction

Inspired by John Bell’s challenging call for an exact formulation of quantum
measurement theory [1, 2], Ph.Blanchard and the present author proposed
a model of quantum measurement based on completely positive (CP) semi-
group coupling between a quantum system and a classical one [3]. The main
advantages of this proposal emerged only after the publication of [3]. In
the following series of papers [4] – [7] the method of Ref. [3] was success-
fully applied to several model physical situations, including Zeno’s effect,
Stern-Gerlach – type coupling, particle position detector, and SQUID–tank
system. In all those cases the coupling was shown to lead to a piecewise –
deterministic random process (PDP) describing time series of experimentally
observed events . Moreover, in Ref. [8] models that deal with simultaneous
measurement of several non–commuting observables were described, and it
was suggested that the question of determining an unknown state of the
quantum system should be answered using the proposed exact definition of
a measurement. However, the obvious and crucial test of any quantum mea-
surement theory, namely that of finding the laws governing track formation
in cloud chambers and on photographic plates was, until recently, missing.
The reason for this was partly of a technical character, namely in all of these
previous applications the classical system was either discrete or finite – di-
mensional, otherwise technical difficulties mounted. In the present paper
we will show how these difficulties can be overcomed owing to the discrete
Poisson nature of the PDP.

Technically, the paper is concerned with a non – relativistic quantum
particle coupled to a classical medium of two–state particle detectors. The
medium is characterized by a family of ”sensitivity” functions ga(x), where
ga can be thought of as a Gaussian–like function centered at a. 1 The con-
figuration space of the classical system is, in general, infinite–dimensional.
In $3 we will write down the simplest possible Liouville equation (Eqs. (5)–
(7)) corresponding to the intuitive idea that presence of the particle at some
point a causes flip in the detector located at that point. The functions ga
are used to describe the spatial sensitivity, and also the response time, of
the detectors. The quantum Hamiltonian is allowed to depend on the actual

1If there is no detector at a, we put ga(x) ≡ 0. Thus our model covers also the case of
a discrete, finite or infinite, number of detectors.
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configuration of the medium (although in most applications such a depen-
dence can be neglected). We denote by HΓ the Hamiltonian corresponding
to detectors flipped at the points of a set Γ. The main result of the present
paper is the derivation of a PDP corresponding to this coupling. The PDP,
derived in $4, can be summarized as follows.

Suppose one starts, at time t0, with all detectors in the ”off” state, and
with the quantum object described by a wave function ψ0 = ψt0. Then ψ
evolves continuously according to the modified Schrödinger evolution

ψΓ;t = exp
(
−iHΓt−

Λt

2

)
ψ0/‖ exp

(
−iHΓt−

Λt

2

)
ψ0‖,

with Γ = {∅} and with Λ defined by Λ(x) =
∫
ga(x)2da, until a jump occurs

at a random time t1, at which time the wave function is, say, ψt1. The jump
consists of a pair: (classical event,quantum jump) . The classical part is a
flip of the detector state at a random point of space, say at a1. It happens at
a point a, with the probability density p(a) given by p(a) = ‖gaψt1‖2/λ(ψt1),
where the rate function λ is given by λ(ψ) = (ψ,Λψ). The quantum part
of the jump is jump of the Hilbert space vector ψt1 to the new state ψ1 =
gaψt1/‖gaψt1‖. After the jump the process starts again with a continuous time
evolution as before, but now with Γ = {a1}. After n events, that happened
at the points a1, . . . , an, one puts Γ = {a1, . . . , an}. The random times of
jumps are regulated by an inhomogeneous Poisson process: the probability
P (t, t + 4t) for the first jump to occur in the time interval (t, t + 4t) is

computed from the formula P (t, t + 4t) = 1 − exp
(
− ∫ t+4tt λ(ψs)

)
ds ≈

λ(ψt)4t.
Our model admits an interesting special case - that of a passive, homo-

geneous medium. If the medium is passive, i.e. if the quantum Hamiltonian
does not depend on the actual state of the medium, and if it is homoge-
neous, then the description simplifies: the quantum process separates, the
jump rate is constant, and one gets ”spontaneous wave–packet reductions”
of Ghirardi–Rimini–Weber (cf. e.g. [9] and references therein). In general,
however, the process of formation of a track has a non–constant rate, and the
dependence of the rate of jumps on the state of the quantum system given
by the present model is essential and experimentally verifiable 2. We believe

2This is one of the important differences between our approach and other ones, where
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that the proposed model of the particle track formation is the simplest one
that gives intuitively expected results. It can be used for numerical simula-
tion of particle track formation for different Hamiltonians and for different
geometric configurations. It should be, in particular, interesting to analyze
numerically the influence of particle detectors on sharpness of the fringe pat-
tern in interferometry experiments.
From a philosophical point of view, it is worth noting that in the present
paper we deliberately avoid the concepts of an ”observer”. Our model aims
at being totally objective. A philosophical summary of our results can be
formulated as follows: Quantum Theory, once invented by human minds and
ones asked questions that are of interest for human beings, needs not ”minds”
or ”observers” any more. What it needs is lot of computing power and effec-
tive random number generators, rather than ”observers”. The fundamental
question, to which we do not know answer yet, can be thus formulated as
follows: can random number generators be avoided and replaced by deter-
ministic algorithms of simple and clear meaning?

2 Events and Quantum Measurements

In this paragraph we will briefly describe the main ideas that influenced our
way of looking at the quantum mechanical measurement problem, and that
finally led to the simple cloud chamber model of this paper.

The crucial concept of our approach to quantum measurements is that of
an ”event”. The importance of this concept, and the intrinsic incapability
of quantum theory to deal with it, have been stressed by several authors. In
1958 E. Schrödinger wrote [12]:

‘It is usually believed that the current orthodox theory actu-
ally accounts for the ”nice linear traces” produced in the Wilson
chamber etc. I think this is a mistake, it does not.’

H.P. Stapp stressed the role of ”events” in the ”world process” (Refs. [13, 14],
cf. also the entry ”events” in the Index of [15]). G. F. Chew used Stapp’s
ideas on soft–photon creation–annihilation processes (cf. [16]) and proposed

dependence of the timing of wave packet reductions on the actual state of the quantum
system could not be derived - cf. e.g.[10] and references therein.
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the term ”explicate order”, complementing Bohm’s ”implicate” quantum or-
der, to denote the world process of ”gentle” creation–annihilation events [17].
R. Haag emphasized [18] that ”an event in quantum physics is discrete and
irreversible” and that ”we must assume that the arrow of time is encoded in
the fundamental laws ...”. In [19] he went on to suggest that ”transforma-
tion of possibilities into facts must be an essential ingredient which must be
included in the fundamental formulation of the theory”.
In [1, 2] J.S. Bell reprimanded the misleading use of the term ”measure-
ment” in quantum theory. He opted for banning this word from our quan-
tum vocabulary, together with other vague terms such as ”macroscopic”,
”microscopic”, ”observable” and several others. He suggested to replace the
term ”measurement” by that of ”experiment”, and also not to speak of ”ob-
servables” (the things that seem to call for an ”observer”) but to introduce
instead the concept of ”beables” - the things that objectively ”happen–to–be
(or not–to–be)”. 3

On the technical side, S. Machida and M. Namiki [20] proposed a way
of describing measurements in quantum mechanics that inspired H. Araki
[21, 22] to formulate his continuous superselection rule model of classical
measuring apparatus in quantum mechanics. In the Araki’s model infinite
time was however needed for an ”event” (change of the classical pointer
position) to occur.

In a series of papers E.C.G. Sudarshan et al. investigated possibility
of solving the measurement problem via a unitary, Hamiltonian coupling
between a quantum and a classical system (cf. [23] and references therein).

N.P. Landsman [24] and M. Ozawa [25] gave quite general (”no–go”)
arguments that stressed impossibility of coupling of classical and quantum
degrees of freedom via a unitary, finite–time dynamics. 4

On the other hand many authors were using ”dynamical semigroups” –
non–unitary dissipative time–evolutions that described an effective dynamics
of quantum systems coupled to other quantum systems or to external ”reser-
voirs” or ”environment”. V. Gorini et al. [26] and Lindblad [27] derived a
general form of generators of norm–continuous semigroups of completely pos-
itive maps of the operator algebra of a Hilbert space. 5 Such semigroups were

3Calling observables ”observables” can be, however, justified in the framework of an
objective theory of experiments. We plan to discuss this subject elsewhere .

4A short no–go argument can be found in Ref. [8].
5It was later extended by E. Christensen and D. Evans [28] to cover the case of more
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widely applied to many kinds of ”master equations” of statistical physics,
while Ghirardi, Rimini and Weber [9] proposed to use a particular Lindblad–
type generator for describing a ”spontaneous reduction process” for a single
quantum particle. The GRW model incorporated ”quantum jumps” that
occurred in finite (Poisson distributed) times, but it did not account for the
(classical) ”events”. Although it was clear to the experts that using dissipa-
tive semigroups instead of a unitary dynamics allowed to go around the no–go
theorems, it is only in [3] that simple methods of construction of dissipative
generators were found that led to measurement–like couplings of quantum
and classical degrees of freedom. Later on, in Refs. [4]–[8], using the results
of M. H. A. Davis (see [29, 30]), a piecewise–deterministic random process
(PDP) on the space of pure states of the total (classical+quantum) system
was associated with the Liouville equation. While the Liouville equation de-
scribes continuous time–evolution of density matrices, that is of statistical
states that concern ensembles, the associated piecewise–deterministic ran-
dom process contains apparently more useful information: it can be used
to simulate real–time behaviour of individual systems in measurement–like
situations.

3 The Cloud Chamber Model

Our aim is to explain the ”nice linear tracks” that quantum particles leave on
photographs and in cloud chambers. These tracks are indeed hard to explain
if one assumes that there are no particles and no events – only Schrödinger’s
waves. Schrödinger himself was perplexed and not quite sure which way to
take.

Physically, a photographic plate or a cloud chamber is a highly complex
many-particle system. Physiologically, it appears to exhibits a complex, irre-
versible dynamics to an external living observer. Many factors participate in
the result – including the mediation of photons in the final act of perception.
However, it seems to us that the detailed internal structure of local particle
detectors, and also the details of the perception process, would it be human
or animal, are totally irrelevant for the phenomenon itself. What is relevant,
it is the response of the detectors to the quantum particle, and their back

general operator algebras, including the case that is most interesting for us - that of a
non–trivial centre.
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reaction on it. We put forward conjecture that it is sufficient to assume that
we have to do with a system of classical two–state detectors that can change
their state when a particle passes nearby. Although the real cloud chamber
have a finite number of sensitive centers, it proves to be no more difficult to
deal with a more general, continuous model - the extra bonus being that we
cover this way the GRW model as well.

There is a formal detail in the model below that deserves to be mentioned:
our model is more reversible than any real cloud chamber. Namely, we allow
for a local detector to change its state back, when it registers the particle for
the second time, and so on. This makes the model slightly easier to solve.
6 The present model can be easily reformulated to cover also the case of
”only-one-flip” detectors. The final PDP proves to be the same except that
each detector can flip only ones.

The derivation of the model below is heuristic. Nevertheless it leads
to a well defined piecewise–deterministic random process that has a clear
physical meaning. We then show that for a passive, homogeneous, medium,
the effective time evolution of the quantum system itself happens to be also
Markovian - it is described by an effective CP semigroup that is identical
to that postulated by Ghirardi et al. [9]. This fact may suggest another
application of our model: instead of considering it as an approximate model
of a real, discrete and finite, cloud chamber, we may consider it as an exact
model of some, perhaps yet unknown, space–structure that is participating in
a universal process of wave packet reductions. The actual physical interpre-
tation may depend on the values of parameters that enter the model. There
will be, essentially, two free parameters: a coupling constant λ, of physical
dimension t−1, that will regulate the expected time rate of jumps, and a
normalized Gaussian function whose width determines space sensitivity of
the detectors. In fact, aiming at a wider applicability of our model, we will
allow for non–constant rates of jumps, and for more general, not necessarily
Gaussian, sensitivity functions. Clearly, presence of arbitrary functions that
are external to the model, makes it to look like a phenomenological rather
than as a fundamental description – unless these functions are derived from
geometrical and probabilistic considerations.

6On the other hand, it is related to the, so called, ”detailed balance condition” that is
often postulated in statistical physics models - for a recent discussion cf. [31] and references
therein.
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We proceed to describe our model in mathematical terms. The descrip-
tion will be brief and will never go beyond elementary mathematical concepts.
Special mathematical terms, when they occur, are used only in an informal
way and can be skipped by a reader who is mainly interested in the main
ideas and results.
Let E denote the physical space, we take for definiteness E = Rn, although
it is straightforward to E to be a homogeneous space or an arbitrary Rieman-
nian manifold. We consider the space E filled up with a continuous medium
which can be, at each point a ∈ E, in one of its two states: ”on–state”, rep-
resented by

(
1
0

)
, or ”off–state”, represented by

(
0
1

)
. We would like to consider

the set of all possible states of the medium. This is however enormously big a
set, because states of the medium are, in our case, in one–to–one correspon-
dence with its configurations, that is with subsets of E. Indeed, to each state
of the medium we can uniquely associate the set of all points that are ”on”.
Thus the set of all states of the medium is isomorphic to 2E. Fortunately
we can restrict our attention to much smaller classes of subsets of E. Let us
introduce equivalence relation ” ∼ ” in 2E, with equivalence classes consist-
ing of subsets of E that differ one from another by at most finite number of
elements. Denoting by 4 the set–theoretical symmetric difference operation,
we have: Γ ∼ Γ′ iff Γ4Γ′ is a finite set. It will be sufficient for us to choose
some ”ground state” and to take its equivalence class, that is the set of these
configurations that differ from the ”vacuum” in at most finite number of
points. For convenience we will take for the ground state the state of ”all
off”, represented by the empty subset ∅ ∈ 2E . Its equivalence class S = [∅]
consists of those states of the medium that are everywhere ”off” except in a
finite number of points, i.e. the class of all finite subsets of E.

Remark. The fact that we can restrict ourselves to the above class S of
sets, instead of dealing with whole of 2E, is not evident by itself. It will be
justified only a posteriori, when we will see that the ”events”, that will appear
in the piecewise-deterministic random process which we will construct later
on, consist of ”flipping” a state of the medium in single (randomly chosen
according to appropriate probability distribution) points of E, and that with
probability one there is a finite number of events in any finite interval of
time.

We can endow S with a topology and with a measurable structure as
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follows: first of all we observe that S is a disjoint union of subsets Si, i =
0, 1, . . ., where Si consists of those states that differ from the ground state
at exactly i points of E. But then, Si is isomorphic to the i−th Cartesian
power of E, with coinciding points extracted, and divided by the action of
the permutation group in i elements. It follows in particular that S has a
power of the continuum.

Statistical states of the classical system are probability measures on S.
They are represented by sequences {µi}, where µi is a measure on Si, and∑∞
i=0 µ(Si) = 1.

Let Hq = L2(Rn, dnx) be the Hilbert space that is used for description of
the quantum system coupled to our classical medium. We denote by B(Hq)
the algebra of bounded linear operators on Hq. Its elements are ”observ-
ables” of the quantum system. Statistical states of the quantum system are
normalized (by Tr(ρ) = 1) positive trace class operators on Hq. Then sta-
tistical states of the total, classical plus quantum, system are described by
measures ρ on S with values in positive, trace class, operators on Hq, with∑∞
i=0 Tr(ρ(Si)) = 1. A natural candidate for the algebra Atot of observables

of the total system is the algebra of continuous, bounded functions on S with
values in B(Hq). Thus, Atot is the direct sum of algebras Ai, where Ai is the
algebra of continuous, bounded, B(Hq)–valued functions on Si. As our main
aim is to derive the PDP rather than to prove the existence of CP semigroup
– we will apply, from now on, a heuristic notation. Thus, a state of the total
system will be represented by a family {ρΓ}Γ∈S, with ‘

∑
Γ’Tr(ρΓ) = 1.

To have some definite example in mind, in what follows we will take for
the quantum system a particle of mass m moving in E = Rn according to
the dynamics described by the quantum Hamiltonian

HΓ = − h̄
2

2m

(
∇x −

e

h̄c
AΓ

)2

+ VΓ(x). (1)

We thus allow quantum Hamiltonian to depend on the actual state of the
medium.

Remark We could allow H to depend explicitly on time - then the semigroup
property would be lost, but PDP would be described in exactly the same way
as in the prsesnt model, except that the exponential in the formula (32) would
have to be time-ordered. Generalization to the case of quantum particle
moving on a manifold and acted upon by gravitational and electromagnetic
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forces is straightforward. A more general treatment, including Bose or Fermi
multiparticle case, will appear elsewhere [32]. The idea will not change also
in such a case.

We proceed now to describe the coupling that corresponds to the following
intuitive picture: the medium consists of detectors that can change their state
if the particle approaches them sufficiently close. The sensitivity of detectors
as well as their relaxation time are described by real, non–negative functions
ga(x), where the variable a describes the position of the detector. We can
think of ga as a hat - like function with its center at x = a. We introduce
then the non–negative function Λ(x) defined by

Λ(x) =
∫
E
ga(x)2da, (2)

for all x ∈ E. Here da denotes the Lebesgue measure, but if we want to
describe a discrete, rather than a continuous, case, then the integral above
should be replaced by a sum. By the abuse of notation we will denote by the
letter Λ the operator of multiplication by the function Λ(x), acting on the
Hilbert space L2(Rn, dnx).
Each state ρ of the total system can be, formally, written as:

ρ =
∑
Γ∈S

ρΓ ⊗ εΓ, (3)

where, for Γ ∈ S,

εΓ =
∏
⊗a∈E

(
χΓ(a) 0

0 1− χΓ(a))

)
, (4)

and where χΓ stands for the characteristic function of Γ.

Remark The last statement requires some care. It is also not quite trivial.
For a finite number of detectors it is not too difficult to see. We are using
above the notation introduced by J. von Neumann in his theory of continuous
tensor products. To give to the above expressions a precise mathematical
meaning, we would have to invoke a part of this theory. (For a more modern
account cf. [33] and references therein.) That tool is however not necessary
for the present, heuristic, purpose. More complete mathematical treatment
will be given elsewhere.
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To define the coupling between the particle and the medium, we will
apply the ideas introduced in [3, 4]. Namely, we will write the Liouville time
evolution equation for the statistical state of the total system as

ρ̇ = −i[H, ρ] + L(ρ), (5)

where L is a Lindblad–type generator that provides dissipative coupling.

Remark: In the present model we will neglect a possible free dynamics of
the medium.

For L we take the simplest possible coupling:

L(ρ) =
∫
da(VaρVa −

1

2
{V 2

a , ρ}) (6)

where
Va = ga ⊗ τa, (7)

ga being the multiplication operator by the function ga(x), and τa denoting
the ”flip” of the detector at the point a:

τa =
∏
⊗bub, (8)

where

ub =
(

1 0
0 1

)
(9)

for b 6= a, while

ua =
(

0 1
1 0

)
. (10)

Because τ 2
a = Id, our evolution equation reads now:

ρ̇ = −i[H, ρ] +
∫
daVaρVa −

1

2
{Λ, ρ}, (11)

where Λ in the anticommutator is understood as a multiplication operator
by the function Λ(x).
Let us denote by a(Γ) the set representing the state Γ with the flipped a:

a(Γ) = Γ4{a}. (12)

11



Then, using change of summation variable Γ→ Γ′ = a(Γ), and also using the
fact that a(a(Γ)) = Γ – i.e. that the second flip cancels the first, we obtain

VaρVa =
∑
Γ∈S

gaρΓga ⊗ εa(Γ) =
∑
Γ∈S

gaρa(Γ)ga ⊗ εΓ (13)

so, that we can write:

ρ̇Γ = −i[HΓ, ρΓ] +
∫
da gaρa(Γ)ga −

1

2
{Λ , ρΓ}. (14)

The equation (14) fundamental. It describes time evolution of the family
{ρΓ}, where Γ runs over all finite subsets of E. All the relevant statistical
information about the quantum particle and the classical medium can be
derived from this equation. In the next paragraph we will derive the piecewise
deterministic random process that is compatible with Eq. (14) and that
concerns histories of individual coupled systems. Before however going to
this, let us see that in the passive, homogeneous, case we can obtain effective
time evolution for the quantum particle alone. If the medium is passive and
homogeneous, then the Hamiltonian does not depend on the actual state
of the medium: HΓ ≡ H. Moreover, for symmetry reasons Λ must be a
constant: Λ(x) ≡ λ. For instance this happens if we take for ga the Gaussian
functions:

ga(x) = λ1/2
(
α

π

)n
2

exp
(
−α(x− a)2

)
. (15)

The effective state of the quantum particle is determined by tracing over the
classical configurations:

ρ̂ =
∑
Γ∈S

ρΓ. (16)

To sum up the Eq. (14) over Γ we note that, for each a ∈ E, a : Γ 7→ a(Γ) is
a one–to–one map of S onto itself, this owing to the fact that 2E is a group
under the symmetric–difference operation, and that S is a subgroup.
Thus we have

∑
Γ∈S ρa(Γ) =

∑
Γ∈S ρΓ = ρ̂. It follows that the time derivative

of ρ̂ depends, for our particular choice of the coupling, only on ρ̂ and not on
the full hierarchy of ρΓ’s; we have:

˙̂ρ = −i[H, ρ̂] +
∫
da gaρ̂ga − λ ρ̂, (17)

which is exactly of the type discussed by Ghirardi, Rimini and Weber (cf.
Ref. [9]).

12



4 The Piecewise Deterministic Process

4.1 Definition of PDP and its infinitesimal generator

In his monographs [29, 30] dealing with stochastic control and optimization
M. H. A. Davis, having in mind mainly queuing and insurance models, de-
scribed a special class of piecewise deterministic processes that was later
found to fit perfectly the needs of quantum measurement theory. Even if for
the present model we will have to extend slightly the original Davis’ frame-
work, and to work with jumps between continuously parameterized states
and not between discrete manifolds, we will describe briefly the discrete case
and we leave the problem of a rigorous formulation of its evident extension
to continuous families aside.

Let ι be an index running over a finite or countable set J . Consider func-
tions f(ξ, ι), where for each ι the variable ξ is continuous and runs through
some set M 7 Suppose we have a one–parameter semi-group of transforma-
tions αt acting on the space of such functions with the infinitesimal generator
D which is an integro–differential operator of the following form:

(Df) (ξ, ι) = (Zιf)(ξ, ι)

+λ(ξ, ι)
∑
ι′
∫
M Q(ξ, ι; dξ′, ι′) (f(ξ′, ι′)− f(ξ, ι)) ,

(18)

where Zι are vector fields that generate one–parameter flows φι on M , λ(ξ, ι)
are non–negative functions, while Q(ξ, ι; dξ′, ι′) are (non–negative) transition
measures - thus satisfying∑

ι′

∫
M
Q(ξ, ι; dξ′, ι′) = 1, (19)

and also ∫
{ξ}
Q(ξ, ι; dξ′, ι) = 0, (20)

for all ι and ξ ∈ M . We notice that by the very definition we have Zι(ξ) =
dφι(ξ, t)/dt |t=0. Then, as it is shown in Refs. [29, 30], one can associate with
this generator D a piecewise–deterministic Markov process that is described
as follows.

7We will need the case where also ι will be continuous running over E, while M will
coincide with the unit ball in the Hilbert space L2(E) (modulo the phase).
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Suppose the process starts at some point (ξ0, ι0). Then ξ evolves continu-
ously along the vector field Zι, ξt = φι(ξ0, t), while ι0 remains constant until a
jump occurs at a certain random time t1. The time of this jump is governed
by a (inhomogeneous) Poisson process with rate function λ(t) = λ(ξt, ι0).
When jump occurs at t = t1, then (ξt1, ι0) jumps to (ξ′, ι) with probability
density Q(ξt1, ι0; dξ′, ι) and the process starts again.

Remark Notice that the probability that the jump will occur between t
and t+dt, provided it did not occurred yet is equal to 1−exp

(
−
∫ t+dt
t λ(s)ds

)
≈

λ(t)dt. This justifies calling λ the rate function.

Association of the random process with the semi–group αt is canonical
and can be described as follows: first one goes from αt that acts on functions
f(ξ, ι) to its dual αt acting on measures. Then, choosing the Dirac measure
δξ0,ι0 concentrated at (ξ0, ι0) as the initial point µ0, we apply to it αt to get
µt = αt(µ0). The resulting measure µt is then characterized by the fact that
dµ(ξ, ι) is equal to the probability that the process starting at t = 0 from
(ξ0, ι0) will end, at time t, at the point (ξ, ι).
A detailed and precise description of the above correspondence should include
specification of the involved measure structures and domains of definition.
We refer the reader to Refs. [29, 30] for mathematical details.

4.2 Derivation of the PDP for the cloud chamber model.

We will now describe the most important fact about our cloud chamber
model: we will show that Eq. (14) describing the time evolution of statistical
states of the total system can be interpreted in terms of a piecewise deter-
ministic random process. That process has then a transparent description in
terms of pairs of (classical event,quantum jump) that are interspersed (in a
random way, according to an homogeneous Poisson point process law with
rate λ) with the periods of continuous, Schrödinger’s type, time evolution.

If we want to interpret the equation (14) in terms of a PDP on pure states,
then the first thing we have to do, is to rewrite Eq.(14) as an equation for
observables rather then states. After doing so we will interpret observables
as functions on pure states.
Given a state ρ = {ρΓ : Γ ∈ S} and an observable A = {AΓ : Γ ∈ S},
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the expectation value of A in ρ is given by < ρ,A >=
∑

Γ Tr(ρΓAΓ). Time
evolution of observables is then defined as dual to the time evolution of states,
so that we have < ρ, Ȧ >=< ρ̇,A >. By substituting the equation (14) for
ρ̇, we easily find that, in our case, observables evolve according to the law
that is almost identical to that for states, except that there is change of sign
in front of the commutator:

ȦΓ = i[HΓ, AΓ] +
∫
da gaAa(Γ)ga −

1

2
{Λ, AΓ}. (21)

Each observable A (of the total system) can be interpreted as a function fA
on pure states (of the total system):

fA(ψ,Γ) ≡ (ψ,AΓψ), ψ ∈ Hq, Γ ∈ S. (22)

We can now sandwich the Eq.(21) between two ψ vectors to see if we can
interpret this equation in terms of time evolution of functions on pure states.
We get

ḟA(ψ,Γ) ≡ fȦ(ψ,Γ)
= (ψ, i[HΓ, AΓ]ψ) + (ψ,

∫
da gaAa(Γ)ga ψ)− 1

2
(ψ, {Λ, AΓ}ψ).

(23)

The first term on the rhs of Eq. (23) can be written also as (ZHfA)(ψ,Γ),
where ZH is the vector field of the Hamiltonian evolution of pure states

(ZHf)(ψ,Γ)
.
=

d

dt
f
(
e−iHΓtψ,Γ

) ∣∣∣∣
t=0

. (24)

The second term can be rewritten as:

(ψ,
∫
da gaAa(Γ)ga ψ) =

∫
da (gaψ,Aa(Γ)gaψ)

= (ψ,Λψ)
∫
da ‖gaψ‖

2

(ψ,Λψ)
fA( gaψ

‖gaψ‖ , a(Γ)).
(25)

Finally, the third term of the Eq. (23), rewritten in terms of the functions
fA, gives rise to two terms:

−1
2
(ψ, {Λ, AΓ}ψ) = d

dt

(
‖ exp

(
−Λ

2
t
)
ψ‖2fA

(
exp(−Λ

2
t)ψ

‖ exp(−Λ
2
t)ψ‖

,Γ
))
|t=0

= −(ψ,Λψ) + d
dt

(
fA

(
exp(−Λ

2
t)ψ

‖ exp(−Λ
2
t)ψ‖

,Γ
))
|t=0.

(26)
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Let us introduce the second vector field ZD corresponding to the non–linear
evolution:

(ZDf)(ψ,Γ)
.
=

d

dt
f

 exp
(
−Λ

2
t
)
ψ

‖ exp
(
−Λ

2
t
)
ψ‖
,Γ

 |t=0. (27)

We now see that we can write the evolution equation for the functions fA in
the form required by Eq.(18) provided we introduce:
the rate function:

λ(ψ) = (ψ,Λψ), (28)

the vector field:
Z = ZH + ZD, (29)

and the transition measure Q(ψ,Γ;ψ′,Γ′)dψ′dΓ′ that vanishes except for

Q(ψ,Γ;ψ′, a(Γ)) =
‖gaψ‖2

λ(ψ)
δ(ψ′ − gaψ

‖gaψ‖
)dψ′, (30)

where δ(ψ′ − ψ)dψ′ is a symbolic expression for the Dirac measure concen-
trated at ψ.
It is easy to see that the vector field Z = ZH + ZD exponentiates to:

(exp(Zt)f) (ψ0,Γ) = f (ψΓ;t,Γ) (31)

where ψΓ;t is given by

ψΓ;t =
exp

(
−iHΓt− Λt

2

)
ψ0

‖ exp
(
−iHΓt− Λt

2

)
ψ0‖

. (32)

Thus ψΓ;t can be thought of as a solution of a non–linear, non–Hermitian
Schrödinger equation.

We now describe the piecewise deterministic process on pure states of the
total system that is associated with these data. Starting with the quantum
system described by an initial wave packet ψ ∈ L2(E), and with the initial
”all off” state of the medium, ψ develops according to the equation (32 until
a jump occurs at random time t1, at which time the wave packet is ψt1. The
time t1 of the jump is governed by the inhomogeneous Poisson process that
is characterized by the probability P (t, t+4t) for the jump to occur in the
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time interval (t, t+4t), provided it did not occurred yet. It is given by the
formula

P (t, t+4t) = 1− exp

(
−
∫ t+4t

t
λ(ψs)

)
ds ≈ λ(ψt)4t. (33)

The jump consists of a pair (classical event,quantum jump) . The classical
event is a flip of the detector at a random point a ∈ E. It happens at a with
probability density

p(a) =
‖gaψt1‖2

λ(ψt1)
. (34)

When the classical detector flips at some point a = a1, then the quantum
states jumps from its actual state ψt1 to the new state ψ1 given by

ψ1 =
ga1ψt1
‖ga1ψt1‖

(35)

and the process starts again.
It is worth noting that, for simple Gaussian packets, and for a free evolution,
the most probable place for a flip to occur is at the maximum of the actual
wave–function. That explains linear tracks. For more complicated geometries
and dynamics – numerical computation is necessary, at least until simple
general laws are found that are based on PDP.

5 Summary and Conclusions

We have seen that a simple coupling between quantum particle and classical
continuous medium of two–state detectors leads to a piecewise deterministic
random process that accounts for track formation in cloud chambers and
photographic plates. For a passive, homogeneous medium the process is
essentially identical to the spontaneous localization GRW model of Ref. [9].
In particular all the theoretical and numerical analysis that has been done
for GRW models applies also in this case.
As mentioned in the Introduction, to simulate track formations only random
number generators and computing power is necessary. Our model does not
involve observers and minds. This does not mean that we do not appreciate
the importance of the mind–body problem. In our opinion understanding
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the problems of minds needs also quantum theory, and perhaps even more
– that is still beyond the horizon of the present-day physics. But our model
indicates that quantum theory does not need human minds. Quantum theory
should be formulated in a way that involves neither observers nor minds -
at least not more than any other branch of physics. Our model can be
considered as a step in this direction. It can rightly be criticized as being too
phenomenological to satisfy us wholly. But, provided it correctly accounts
for experimental results, it can give a valuable new insight into the quantum
duality of potential and actual, of waves and particles, and of determined
and random.
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